FedMKT: Federated Mutual Knowledge Transfer for Large and Small Language Models
- URL: http://arxiv.org/abs/2406.02224v2
- Date: Tue, 18 Jun 2024 08:17:00 GMT
- Title: FedMKT: Federated Mutual Knowledge Transfer for Large and Small Language Models
- Authors: Tao Fan, Guoqiang Ma, Yan Kang, Hanlin Gu, Yuanfeng Song, Lixin Fan, Kai Chen, Qiang Yang,
- Abstract summary: FedMKT is a parameter-efficient mutual knowledge transfer framework for large and small language models.
We show that FedMKT simultaneously boosts the performance of both LLMs and SLMs.
- Score: 28.284346666217207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server's LLM and clients' SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server's LLM to clients' SLMs while concurrently enriching the LLM with clients' unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, we evaluate the effectiveness of FedMKT using various public LLMs and SLMs on a range of NLP text generation tasks. Empirical results demonstrate that FedMKT simultaneously boosts the performance of both LLMs and SLMs.
Related papers
- MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data [25.45278447786954]
We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL)
Our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources.
arXiv Detail & Related papers (2024-09-09T21:04:16Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
Training large language models (LLMs) requires significant computing resources.
Existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks.
arXiv Detail & Related papers (2024-07-11T05:38:15Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrot is a service system that focuses on the end-to-end experience of LLM-based applications.
A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests.
arXiv Detail & Related papers (2024-05-30T09:46:36Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
We introduce a Federated Domain-specific Knowledge Transfer framework.
It enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy.
The proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5% with a privacy budget of less than 10.
arXiv Detail & Related papers (2024-05-23T06:14:35Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Mutual Enhancement of Large and Small Language Models with Cross-Silo
Knowledge Transfer [27.63746419563747]
Large language models (LLMs) are empowered with broad knowledge, but their task-specific performance is often suboptimal.
It necessitates fine-tuning LLMs with task-specific data, but such data may be inaccessible due to privacy concerns.
We propose a novel approach to enhance LLMs with smaller language models (SLMs) that are trained on clients using their private task-specific data.
arXiv Detail & Related papers (2023-12-10T09:52:32Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.