SoupLM: Model Integration in Large Language and Multi-Modal Models
- URL: http://arxiv.org/abs/2407.08196v1
- Date: Thu, 11 Jul 2024 05:38:15 GMT
- Title: SoupLM: Model Integration in Large Language and Multi-Modal Models
- Authors: Yue Bai, Zichen Zhang, Jiasen Lu, Yun Fu,
- Abstract summary: Training large language models (LLMs) requires significant computing resources.
Existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks.
- Score: 51.12227693121004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large language models (LLMs) and multimodal LLMs necessitates significant computing resources, and existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks. For instance, LLaMA, Vicuna, and LLaVA are three LLM variants trained with LLaMA base models using very different training recipes, tasks, and data modalities. The training cost and complexity for such LLM variants grow rapidly. In this study, we propose to use a soup strategy to assemble these LLM variants into a single well-generalized multimodal LLM (SoupLM) in a cost-efficient manner. Assembling these LLM variants efficiently brings knowledge and specialities trained from different domains and data modalities into an integrated one (e.g., chatbot speciality from user-shared conversations for Vicuna, and visual capacity from vision-language data for LLaVA), therefore, to avoid computing costs of repetitive training on several different domains. We propose series of soup strategies to systematically benchmark performance gains across various configurations, and probe the soup behavior across base models in the interpolation space.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data [25.45278447786954]
We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL)
Our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources.
arXiv Detail & Related papers (2024-09-09T21:04:16Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.