論文の概要: Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning
- arxiv url: http://arxiv.org/abs/2406.02251v1
- Date: Tue, 4 Jun 2024 12:17:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:32:17.861161
- Title: Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning
- Title(参考訳): 変圧器と弱教師付き学習を利用した小説の感情軌跡のモデル化
- Authors: Lukas Christ, Shahin Amiriparian, Manuel Milling, Ilhan Aslan, Björn W. Schuller,
- Abstract要約: 本研究では,個別の感情カテゴリーで注釈付けされた子どもの物語の既存のデータセットに対して,連続的原子価と覚醒ラベルを導入する。
得られた感情信号を予測するために,DeBERTaモデルを微調整し,弱教師付き学習手法を用いてベースラインを改善する。
詳細な分析では、著者、個々の物語、物語内のセクションなどの要因によって結果がどの程度異なるかが示される。
- 参考スコア(独自算出の注目度): 47.02027575768659
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modeling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no benchmark for this task. We address this gap by introducing continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories. We collect additional annotations for this data and map the categorical labels to the continuous valence and arousal space. For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach. The best configuration achieves a Concordance Correlation Coefficient (CCC) of $.8221$ for valence and $.7125$ for arousal on the test set, demonstrating the efficacy of our proposed approach. A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story. In addition, we uncover the weaknesses of our approach by investigating examples that prove to be difficult to predict.
- Abstract(参考訳): 物語を語ることは人間のコミュニケーションの不可欠な部分であり、感情を喚起し、聴衆の感情状態に影響を与えることができる。
物語における感情的軌跡の自動モデル化は、学術的にかなりの関心を集めている。
しかし、既存の作業の多くは教師なし辞書ベースのアプローチに限られているため、このタスクのベンチマークは存在しない。
このギャップを解消するために,従来の子どもの物語を個別の感情カテゴリーでアノテートしたデータセットに対して,連続的原子価と覚醒ラベルを導入する。
このデータに対する追加アノテーションを収集し、カテゴリラベルを連続的な価数と覚醒空間にマッピングする。
得られた感情信号を予測するために,DeBERTaモデルを微調整し,弱教師付き学習手法を用いてベースラインを改善する。
最適構成は、評価値に対して$.8221$、テストセット上でのarousalに対して$.7125$の一致相関係数(CCC)を達成し、提案手法の有効性を実証する。
詳細な分析では、著者、個々の物語、物語内のセクションなどの要因によって結果がどの程度異なるかが示される。
さらに,予測が困難であることを示す事例を調査することで,アプローチの弱点を明らかにする。
関連論文リスト
- CAGE: Circumplex Affect Guided Expression Inference [9.108319009019912]
本稿では,2つの共通データセット (AffectNet と EMOTIC) に対して,感情の概略モデルの構成要素を具備した詳細な分析を行った。
本稿では,軽量アプリケーションに適した表情予測モデルを提案する。
論文 参考訳(メタデータ) (2024-04-23T12:30:17Z) - DeltaScore: Fine-Grained Story Evaluation with Perturbations [69.33536214124878]
DELTASCOREは,ニュアンスストーリーの側面の評価に摂動技術を用いた新しい手法である。
私たちの中心的な命題は、物語が特定の側面(例えば、流感)で興奮する程度は、特定の摂動に対するその感受性の大きさと相関している、と仮定している。
事前学習言語モデルを用いて,前摂動状態と後摂動状態の確率差を計算することにより,アスペクトの品質を測定する。
論文 参考訳(メタデータ) (2023-03-15T23:45:54Z) - Automatic Emotion Modelling in Written Stories [4.484753247472559]
そこで本稿では,トランスフォーマーをベースとした新たな手法を提案する。
我々は,事前学習したELECTRAモデルを微調整するためのいくつかの戦略を探求し,文の文脈を考えることの利点について検討する。
私たちのコードと追加のアノテーションはhttps://github.com/lc0197/emotion_modelling_stories.orgで利用可能です。
論文 参考訳(メタデータ) (2022-12-21T21:46:01Z) - Unifying the Discrete and Continuous Emotion labels for Speech Emotion
Recognition [28.881092401807894]
音声からの感情検出のためのパラ言語分析では、感情は離散的または次元的(連続的な評価)ラベルと同一視されている。
本研究では,連続的感情特性と離散的感情特性を共同で予測するモデルを提案する。
論文 参考訳(メタデータ) (2022-10-29T16:12:31Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
視覚感情分析(VEA)は、人々の感情を異なる視覚刺激に向けて予測することを目的としている。
既存の手法では、集団投票プロセスにおいて固有の主観性を無視して、統合されたネットワークにおける視覚的感情分布を予測することが多い。
視覚的感情分布の主観性を調べるために,新しいテキストサブジェクティビティ評価ネットワーク(SAMNet)を提案する。
論文 参考訳(メタデータ) (2022-07-25T02:20:03Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。