論文の概要: Analyzing the Benefits of Prototypes for Semi-Supervised Category Learning
- arxiv url: http://arxiv.org/abs/2406.02268v1
- Date: Tue, 4 Jun 2024 12:47:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:20:58.044863
- Title: Analyzing the Benefits of Prototypes for Semi-Supervised Category Learning
- Title(参考訳): 半教師付きカテゴリー学習におけるプロトタイプのメリットの分析
- Authors: Liyi Zhang, Logan Nelson, Thomas L. Griffiths,
- Abstract要約: 半教師付き学習におけるプロトタイプベース表現の利点について検討する。
プロトタイプの作成により,半教師付きカテゴリー学習が向上することを示す。
- 参考スコア(独自算出の注目度): 3.5595258376041814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Categories can be represented at different levels of abstraction, from prototypes focused on the most typical members to remembering all observed exemplars of the category. These representations have been explored in the context of supervised learning, where stimuli are presented with known category labels. We examine the benefits of prototype-based representations in a less-studied domain: semi-supervised learning, where agents must form unsupervised representations of stimuli before receiving category labels. We study this problem in a Bayesian unsupervised learning model called a variational auto-encoder, and we draw on recent advances in machine learning to implement a prior that encourages the model to use abstract prototypes to represent data. We apply this approach to image datasets and show that forming prototypes can improve semi-supervised category learning. Additionally, we study the latent embeddings of the models and show that these prototypes allow the models to form clustered representations without supervision, contributing to their success in downstream categorization performance.
- Abstract(参考訳): カテゴリは、最も典型的なメンバーに焦点を当てたプロトタイプから、そのカテゴリの観察されたすべての例を思い出すまで、さまざまなレベルの抽象化で表現できる。
これらの表現は教師あり学習の文脈で研究され、そこでは刺激が既知のカテゴリラベルで提示される。
半教師付き学習では、エージェントはカテゴリーラベルを受け取る前に教師なしの刺激表現を作らなければならない。
我々はこの問題を,変分オートエンコーダと呼ばれるベイズ的教師なし学習モデルを用いて検討し,データ表現に抽象プロトタイプを使用することを奨励する先行モデルを実装するための機械学習の最近の進歩について考察する。
本手法を画像データセットに適用し,プロトタイプの作成が半教師付きカテゴリー学習を改善することを示す。
さらに,モデルの潜伏埋め込みについて検討し,これらのプロトタイプにより,モデルが監督なしにクラスタ化表現を形成でき,下流分類性能の成功に寄与することを示す。
関連論文リスト
- A prototype-based model for set classification [2.0564549686015594]
ベクトルの集合を表す一般的な方法は、それらを線型部分空間としてモデル化することである。
我々は、そのような線型部分空間、グラスマン多様体から形成される多様体について、プロトタイプベースの学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-25T04:29:18Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - A Unified Interactive Model Evaluation for Classification, Object
Detection, and Instance Segmentation in Computer Vision [31.441561710096877]
コンピュータビジョンにおける分類,オブジェクト検出,インスタンスセグメンテーションのための統一モデル評価を支援するために,オープンソースビジュアル分析ツールUni-Evaluatorを開発した。
我々の手法の背景にある重要な考え方は、異なるタスクにおける離散的および連続的な予測を統一された確率分布として定式化することである。
これらの分布に基づいて,1)モデルの性能を概観する行列ベースの可視化,2)モデルの性能が不十分な問題のあるデータサブセットを識別するテーブル視覚化,3)興味のあるサンプルを表示するグリッド視覚化を開発する。
論文 参考訳(メタデータ) (2023-08-09T18:11:28Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
本稿では,大規模な画像収集において未知のカテゴリを識別することを目的とした,新しいカテゴリ発見(NCD)の課題に取り組む。
本稿では,プロトタイプ表現学習とプロトタイプ自己学習という,2つの主要な段階からなる適応型プロトタイプ学習手法を提案する。
本研究では,4つのベンチマークデータセットについて広範な実験を行い,提案手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-01T16:34:33Z) - A Computational Acquisition Model for Multimodal Word Categorization [35.82822305925811]
本稿では, イメージ・キャプション・ペアから学習した, 認知に着想を得たマルチモーダル獲得モデルを提案する。
本モデルでは,単語のカテゴリとオブジェクト認識能力について学習し,発達文献で報告されたような傾向を示す。
論文 参考訳(メタデータ) (2022-05-12T09:28:55Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
アクティブラーニング(AL)アルゴリズムは、最小限のラベル付き例をブートストラップ方式で効率的な分類器を構築しようとする。
データ駆動学習の時代において、これは追求すべき重要な研究方向である。
本稿では,モデルの有効性に加えて,ブートストラップ段階におけるモデルの解釈可能性の向上も目指すAL選択関数の開発に向けた取り組みについて述べる。
論文 参考訳(メタデータ) (2020-09-02T07:15:39Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。