Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
- URL: http://arxiv.org/abs/2406.02313v3
- Date: Mon, 16 Sep 2024 09:17:21 GMT
- Title: Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
- Authors: Bálint Máté, François Fleuret, Tristan Bereau,
- Abstract summary: We propose to perform thermodynamic integration (TI) along an alchemical pathway represented by a trainable neural network.
In this work, we parametrize a time-dependent Hamiltonian interpolating between the interacting and non-interacting systems, and optimize its gradient.
The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation.
- Score: 19.871787625519513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermodynamic integration (TI) offers a rigorous method for estimating free-energy differences by integrating over a sequence of interpolating conformational ensembles. However, TI calculations are computationally expensive and typically limited to coupling a small number of degrees of freedom due to the need to sample numerous intermediate ensembles with sufficient conformational-space overlap. In this work, we propose to perform TI along an alchemical pathway represented by a trainable neural network, which we term Neural TI. Critically, we parametrize a time-dependent Hamiltonian interpolating between the interacting and non-interacting systems, and optimize its gradient using a score matching objective. The ability of the resulting energy-based diffusion model to sample all intermediate ensembles allows us to perform TI from a single reference calculation. We apply our method to Lennard-Jones fluids, where we report accurate calculations of the excess chemical potential, demonstrating that Neural TI reproduces the underlying changes in free energy without the need for simulations at interpolating Hamiltonians.
Related papers
- Solvation Free Energies from Neural Thermodynamic Integration [19.871787625519513]
We compute solvation free energies along a neural-network potential interpolating between two target Hamiltonians.
We validate our method to compute solvation free energies on several benchmark systems.
arXiv Detail & Related papers (2024-10-21T09:28:46Z) - Physics aware machine learning for micromagnetic energy minimization: recent algorithmic developments [0.0]
Building on Brown's bounds for magnetostatic self-energy, we revisit their application in the context of variational formulations of the transmission problems.
We reformulate these bounds on a finite domain, making the method more efficient and scalable for numerical simulation.
Results highlight the potential of mesh-free Physics-Informed Neural Networks (PINNs) and Extreme Learning Machines (ELMs) when integrated with hard constraints.
arXiv Detail & Related papers (2024-09-19T16:22:40Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization [0.1469945565246172]
In this work, we suggest an end-to-end model which directly predicts per-atom energy from the coordinates of particles.
We tested our model against several challenges in molecular simulation problems, including periodic boundary condition (PBC), $n$-body interaction, and binary composition.
arXiv Detail & Related papers (2021-10-27T12:18:25Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Dual Training of Energy-Based Models with Overparametrized Shallow
Neural Networks [41.702175127106784]
Energy-based models (EBMs) are generative models that are usually trained via maximum likelihood estimation.
We propose a dual formulation of an EBMs algorithm in which the particles are sometimes restarted at random samples drawn from the data set, and show that performing these restarts corresponds to a score every step.
These results are illustrated in simple numerical experiments.
arXiv Detail & Related papers (2021-07-11T21:43:18Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature.
Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration.
We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum.
arXiv Detail & Related papers (2020-10-10T05:38:03Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.