A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization
- URL: http://arxiv.org/abs/2110.14374v1
- Date: Wed, 27 Oct 2021 12:18:25 GMT
- Title: A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization
- Authors: Ji Woong Yu, Min Young Ha, Bumjoon Seo, and Won Bo Lee
- Abstract summary: In this work, we suggest an end-to-end model which directly predicts per-atom energy from the coordinates of particles.
We tested our model against several challenges in molecular simulation problems, including periodic boundary condition (PBC), $n$-body interaction, and binary composition.
- Score: 0.1469945565246172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of neural network potential (NNP) with molecular simulations
plays an important role in an efficient and thorough understanding of a
molecular system's potential energy surface (PES). However, grasping the
interplay between input features and their local contribution to NNP is
growingly evasive due to heavy featurization. In this work, we suggest an
end-to-end model which directly predicts per-atom energy from the coordinates
of particles, avoiding expert-guided featurization of the network input.
Employing self-attention as the main workhorse, our model is intrinsically
equivariant under the permutation operation, resulting in the invariance of the
total potential energy. We tested our model against several challenges in
molecular simulation problems, including periodic boundary condition (PBC),
$n$-body interaction, and binary composition. Our model yielded stable
predictions in all tested systems with errors significantly smaller than the
potential energy fluctuation acquired from molecular dynamics simulations.
Thus, our work provides a minimal baseline model that encodes complex
interactions in a condensed phase system to facilitate the data-driven analysis
of physicochemical systems.
Related papers
- Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
Transformer-based models have demonstrated exceptional performance across diverse domains.
Little is known about how they operate or what are their expected dynamics.
We use methods for the study of asymmetric Hopfield networks in nonequilibrium regimes.
arXiv Detail & Related papers (2024-06-11T13:29:34Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables [0.0]
We propose a method that leverages uncertainty as the collective variable (CV) to guide the acquisition of chemically-relevant data points.
This approach employs a Gaussian Mixture Model-based uncertainty metric from a single model as the CV for biased molecular dynamics simulations.
arXiv Detail & Related papers (2024-02-06T06:42:51Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - From Peptides to Nanostructures: A Euclidean Transformer for Fast and
Stable Machine Learned Force Fields [5.013279299982324]
We propose a transformer architecture called SO3krates that combines sparse equivariant representations with a self-attention mechanism.
SO3krates achieves a unique combination of accuracy, stability, and speed that enables insightful analysis of quantum properties of matter on extended time and system size scales.
arXiv Detail & Related papers (2023-09-21T09:22:05Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
We introduce an optimized implementation of the hybrid method (NNP/MM), which combines neural network potentials (NNP) and molecular mechanics (MM)
This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency.
It has enabled us to increase the simulation speed by 5 times and achieve a combined sampling of one microsecond for each complex, marking the longest simulations ever reported for this class of simulation.
arXiv Detail & Related papers (2022-01-20T10:57:20Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.