論文の概要: Generative Conditional Distributions by Neural (Entropic) Optimal Transport
- arxiv url: http://arxiv.org/abs/2406.02317v1
- Date: Tue, 4 Jun 2024 13:45:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:10:55.360843
- Title: Generative Conditional Distributions by Neural (Entropic) Optimal Transport
- Title(参考訳): ニューラル(エントロピー)最適輸送による生成条件分布
- Authors: Bao Nguyen, Binh Nguyen, Hieu Trung Nguyen, Viet Anh Nguyen,
- Abstract要約: 本稿では,条件分布の生成モデル学習を目的とした,ニューラルエントロピー最適輸送手法を提案する。
提案手法は,2つのニューラルネットワークのミニマックストレーニングに依存する。
実世界のデータセットを用いた実験では,現状条件分布学習法と比較して,アルゴリズムの有効性が示された。
- 参考スコア(独自算出の注目度): 12.152228552335798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning conditional distributions is challenging because the desired outcome is not a single distribution but multiple distributions that correspond to multiple instances of the covariates. We introduce a novel neural entropic optimal transport method designed to effectively learn generative models of conditional distributions, particularly in scenarios characterized by limited sample sizes. Our method relies on the minimax training of two neural networks: a generative network parametrizing the inverse cumulative distribution functions of the conditional distributions and another network parametrizing the conditional Kantorovich potential. To prevent overfitting, we regularize the objective function by penalizing the Lipschitz constant of the network output. Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques. Our implementation can be found at https://github.com/nguyenngocbaocmt02/GENTLE.
- Abstract(参考訳): 条件分布の学習は、望ましい結果が単一分布ではなく、共変数の複数のインスタンスに対応する複数の分布であるため、困難である。
本稿では, 条件分布の生成モデル, 特に限られたサンプルサイズを特徴とするシナリオを効果的に学習するための, ニューラルエントロピー最適輸送手法を提案する。
本手法は,条件分布の逆累積分布関数をパラメータ化する生成ネットワークと,条件カントロビッチポテンシャルをパラメータ化する別のネットワークという,2つのニューラルネットワークのミニマックストレーニングに依存する。
オーバーフィッティングを防止するため,ネットワーク出力のリプシッツ定数をペナルティ化することにより目的関数を正規化する。
実世界のデータセットを用いた実験では,現状条件分布学習法と比較して,アルゴリズムの有効性が示された。
実装はhttps://github.com/nguyenngocbaocmt02/GENTLEで確認できます。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
Language Model Finetuning Using Shared Randomness [86.61582747039053]
分散環境での言語モデルトレーニングは、交換の通信コストによって制限される。
分散微調整を低帯域幅で行うために,共有ランダムネスを用いた最近の作業を拡張した。
論文 参考訳(メタデータ) (2023-06-16T17:59:51Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
正規化フロー(NF)は、連続生成器を使用して、単純な潜伏分布(例えばガウス分布)をトレーニングデータセットに関連する経験的対象分布にマッピングする。
標準NFは可微分写像を実装しているため、複雑な分布を対象とする場合、病理学的挙動に悩まされることがある。
本稿では,マルコフ連鎖モンテカルロアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-20T09:31:35Z) - Cooperative Distribution Alignment via JSD Upper Bound [7.071749623370137]
教師なし分布アライメントは、2つ以上のソース分布を共有整列分布にマッピングする変換を推定する。
このタスクには、生成モデリング、教師なしドメイン適応、社会的に認識された学習など、多くの応用がある。
我々は,従来のフローベースアプローチを,単一の非逆数フレームワークで統一し,一般化することを提案する。
論文 参考訳(メタデータ) (2022-07-05T20:09:03Z) - Adversarial sampling of unknown and high-dimensional conditional
distributions [0.0]
本稿では, GAN (Generative Adversarial Network) と呼ばれるデータ駆動方式を用いて, サンプリング法と基礎分布の推定を行う。
GANは、2つの競合するニューラルネットワークをトレーニングし、トレーニングセット分布からサンプルを効果的に生成できるネットワークを生成する。
提案アルゴリズムのすべてのバージョンは, 対象条件分布を, サンプルの品質に最小限の影響で効果的にサンプリングできることが示されている。
論文 参考訳(メタデータ) (2021-11-08T12:23:38Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Deconvolutional Density Network: Free-Form Conditional Density
Estimation [6.805003206706124]
ニューラルネットワークを使用して、出力分布を明示的に計算することができる。
我々はデコンボリューションを用いた自由形式分布のモデル化の利点を示す。
我々は,本手法を他の多くの密度推定手法と比較した。
論文 参考訳(メタデータ) (2021-05-29T20:09:25Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。