論文の概要: A Survey of Transformer Enabled Time Series Synthesis
- arxiv url: http://arxiv.org/abs/2406.02322v1
- Date: Tue, 4 Jun 2024 13:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:10:55.355681
- Title: A Survey of Transformer Enabled Time Series Synthesis
- Title(参考訳): 時系列合成が可能な変圧器の検討
- Authors: Alexander Sommers, Logan Cummins, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold,
- Abstract要約: 生成AIは画像と言語領域で多くの注目を集めている。
本稿では,変換器,生成AI,時系列データの交点におけるこのギャップを明らかにする。
レビューされた研究はアプローチの多様さを示しており、ドメインがもたらす問題に対する決定的な回答にはまだ収束していない。
- 参考スコア(独自算出の注目度): 38.897055626205464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has received much attention in the image and language domains, with the transformer neural network continuing to dominate the state of the art. Application of these models to time series generation is less explored, however, and is of great utility to machine learning, privacy preservation, and explainability research. The present survey identifies this gap at the intersection of the transformer, generative AI, and time series data, and reviews works in this sparsely populated subdomain. The reviewed works show great variety in approach, and have not yet converged on a conclusive answer to the problems the domain poses. GANs, diffusion models, state space models, and autoencoders were all encountered alongside or surrounding the transformers which originally motivated the survey. While too open a domain to offer conclusive insights, the works surveyed are quite suggestive, and several recommendations for best practice, and suggestions of valuable future work, are provided.
- Abstract(参考訳): 生成型AIは画像と言語領域で多くの注目を集めており、トランスフォーマーニューラルネットワークが最先端を支配し続けている。
しかし、これらのモデルを時系列生成に適用することはあまり検討されておらず、機械学習、プライバシー保護、説明可能性研究に非常に有用である。
本調査では, トランスフォーマ, 生成AI, 時系列データの交点において, このギャップを識別し, 比較的人口密度の低いサブドメインでレビューを行う。
レビューされた研究はアプローチの多様さを示しており、ドメインがもたらす問題に対する決定的な回答にはまだ収束していない。
GAN、拡散モデル、状態空間モデル、オートエンコーダは全て、当初調査の動機となったトランスフォーマーの周辺で遭遇した。
決定的な洞察を提供するにはドメインをオープンしすぎるが、調査対象の作業は非常に示唆的であり、ベストプラクティスのためのいくつかの推奨事項と、価値のある将来の作業の提案が提供されている。
関連論文リスト
- Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
時系列異常検出は、エンジニアリングプロセスにおいて重要な役割を果たす。
この調査では、オンラインとオフラインの区別とトレーニングと推論を行う新しい分類法を紹介した。
文献で使用される最も一般的なデータセットと評価指標、および詳細な分析を示す。
論文 参考訳(メタデータ) (2024-08-07T13:01:10Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
この調査は、Recurrenceの統一の傘の下に構築されたこれらのトレンドの概要を提供することを目的としている。
長いシーケンスを処理するという考え方を捨てる際に顕著になる新しい研究機会を強調している。
論文 参考訳(メタデータ) (2024-02-12T23:55:55Z) - Transformer for Object Re-Identification: A Survey [69.61542572894263]
ビジョントランスフォーマーは、TransformerベースのRe-IDをさらに深く研究している。
本稿では、TransformerベースのRe-IDの総合的なレビューと詳細な分析を行う。
本稿では,教師なしRe-IDのトレンドを考えると,最先端性能を実現するための新しいトランスフォーマーベースラインUntransReIDを提案する。
論文 参考訳(メタデータ) (2024-01-13T03:17:57Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z) - Two Steps Forward and One Behind: Rethinking Time Series Forecasting
with Deep Learning [7.967995669387532]
Transformerは、人工知能ニューラルネットワークの世界に革命をもたらした、非常に成功したディープラーニングモデルである。
時系列予測領域に適用したトランスフォーマーモデルの有効性について検討する。
性能が良く、より複雑でない代替モデル一式を提案する。
論文 参考訳(メタデータ) (2023-04-10T12:47:42Z) - Transformers in Time Series: A Survey [66.50847574634726]
時系列モデリングのためのTransformerスキームを,その強みと限界を強調して体系的にレビューする。
ネットワーク構造の観点から、トランスフォーマーに施された適応と修正を要約する。
応用の観点からは,予測,異常検出,分類などの共通タスクに基づいて時系列変換器を分類する。
論文 参考訳(メタデータ) (2022-02-15T01:43:27Z) - Transformers predicting the future. Applying attention in next-frame and
time series forecasting [0.0]
繰り返しニューラルネットワークは、最近まで、シーケンス内のタイムリーな依存関係をキャプチャする最良の方法の1つでした。
トランスフォーマーの導入により、RNNのない注意機構しか持たないアーキテクチャが、様々なシーケンス処理タスクの結果を改善することが証明された。
論文 参考訳(メタデータ) (2021-08-18T16:17:29Z) - Generative adversarial networks in time series: A survey and taxonomy [7.885673762715387]
GAN(Generative Adversarial Network)の研究は、ここ数年で指数関数的に増加している。
GANアプリケーションは時系列やシーケンス生成といった分野にまたがって多様化してきた。
GANの比較的新しいニッチとして、フィールドワークは高品質で多様性があり、プライベートな時系列データの開発を続けている。
論文 参考訳(メタデータ) (2021-07-23T09:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。