Technical Language Processing for Telecommunications Specifications
- URL: http://arxiv.org/abs/2406.02325v1
- Date: Tue, 4 Jun 2024 13:57:22 GMT
- Title: Technical Language Processing for Telecommunications Specifications
- Authors: Felipe A. Rodriguez Y.,
- Abstract summary: Large Language Models (LLMs) are continuously being applied in a more diverse set of contexts.
One such area with real-world technical documentation is telecommunications engineering.
This article outlines the limitations of out-of-the-box NLP tools for processing technical information generated by telecommunications experts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are continuously being applied in a more diverse set of contexts. At their current state, however, even state-of-the-art LLMs such as Generative Pre-Trained Transformer 4 (GTP-4) have challenges when extracting information from real-world technical documentation without a heavy preprocessing. One such area with real-world technical documentation is telecommunications engineering, which could greatly benefit from domain-specific LLMs. The unique format and overall structure of telecommunications internal specifications differs greatly from standard English and thus it is evident that the application of out-of-the-box Natural Language Processing (NLP) tools is not a viable option. In this article, we outline the limitations of out-of-the-box NLP tools for processing technical information generated by telecommunications experts, and expand the concept of Technical Language Processing (TLP) to the telecommunication domain. Additionally, we explore the effect of domain-specific LLMs in the work of Specification Engineers, emphasizing the potential benefits of adopting domain-specific LLMs to speed up the training of experts in different telecommunications fields.
Related papers
- Leveraging Distillation Techniques for Document Understanding: A Case Study with FLAN-T5 [0.0]
We present a novel approach wherein we distill document understanding knowledge from the proprietary LLM ChatGPT into FLAN-T5.
Our findings underscore the potential of distillation techniques in facilitating the deployment of sophisticated language models in real-world scenarios.
arXiv Detail & Related papers (2024-09-17T15:37:56Z) - Tele-LLMs: A Series of Specialized Large Language Models for Telecommunications [20.36003316123051]
We develop and open-source Tele-LLMs, the first series of language models ranging from 1B to 8B parameters, specifically tailored for telecommunications.
Our evaluations demonstrate that these models outperform their general-purpose counterparts on Tele-Eval while retaining their previously acquired capabilities.
arXiv Detail & Related papers (2024-09-09T03:58:51Z) - Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities [36.711166825551715]
Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities.
This work aims to provide a comprehensive overview of LLM-enabled telecom networks.
arXiv Detail & Related papers (2024-05-17T14:46:13Z) - Beyond Natural Language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication [79.79948834910579]
Natural language (NL) has long been the predominant format for human cognition and communication.
In this work, we challenge the default use of NL by exploring the utility of non-NL formats in different contexts.
arXiv Detail & Related papers (2024-02-28T16:07:54Z) - Fine-tuning Large Language Models for Domain-specific Machine
Translation [8.439661191792897]
Large language models (LLMs) have made significant progress in machine translation (MT)
However, their potential in domain-specific MT remains under-explored.
This paper proposes a prompt-oriented fine-tuning method, denoted as LlamaIT, to effectively and efficiently fine-tune a general-purpose LLM for domain-specific MT tasks.
arXiv Detail & Related papers (2024-02-23T02:24:15Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
Open-source large language models (LLMs) have gained significant strength across diverse fields.
In this work, we construct an open-source multilingual supervised fine-tuning dataset.
The resulting UltraLink dataset comprises approximately 1 million samples across five languages.
arXiv Detail & Related papers (2024-02-07T05:05:53Z) - Domain Prompt Learning with Quaternion Networks [49.45309818782329]
We propose to leverage domain-specific knowledge from domain-specific foundation models to transfer the robust recognition ability of Vision-Language Models to specialized domains.
We present a hierarchical approach that generates vision prompt features by analyzing intermodal relationships between hierarchical language prompt features and domain-specific vision features.
Our proposed method achieves new state-of-the-art results in prompt learning.
arXiv Detail & Related papers (2023-12-12T08:49:39Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
This paper surveys research works in the quickly advancing field of instruction tuning (IT)
In this paper, unless specified otherwise, instruction tuning (IT) will be equivalent to supervised fine-tuning (SFT)
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Large Language Models for Telecom: Forthcoming Impact on the Industry [13.456882619578707]
Large Language Models (LLMs), AI-driven models that can achieve general-purpose language understanding and generation, have emerged as a transformative force.
We delve into the inner workings of LLMs, providing insights into their current capabilities and limitations.
We uncover essential research directions that deal with the distinctive challenges of utilizing the LLMs within the telecom domain.
arXiv Detail & Related papers (2023-08-11T08:41:00Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - On the validity of pre-trained transformers for natural language
processing in the software engineering domain [78.32146765053318]
We compare BERT transformer models trained with software engineering data with transformers based on general domain data.
Our results show that for tasks that require understanding of the software engineering context, pre-training with software engineering data is valuable.
arXiv Detail & Related papers (2021-09-10T08:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.