Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities
- URL: http://arxiv.org/abs/2405.10825v2
- Date: Mon, 16 Sep 2024 05:09:57 GMT
- Title: Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities
- Authors: Hao Zhou, Chengming Hu, Ye Yuan, Yufei Cui, Yili Jin, Can Chen, Haolun Wu, Dun Yuan, Li Jiang, Di Wu, Xue Liu, Charlie Zhang, Xianbin Wang, Jiangchuan Liu,
- Abstract summary: Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities.
This work aims to provide a comprehensive overview of LLM-enabled telecom networks.
- Score: 36.711166825551715
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.
Related papers
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - LLM-Empowered Resource Allocation in Wireless Communications Systems [12.653336728447654]
Large language models (LLMs) have the potential to realize artificial general intelligence (AGI)-enabled wireless networks.
We develop an LLM-based resource allocation scheme for wireless communication systems.
arXiv Detail & Related papers (2024-08-06T04:08:26Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a range of applications.
However, the increasing size and complexity of LLMs present significant challenges in both training and deployment.
We provide a review of recent advancements and research directions aimed at addressing these challenges.
arXiv Detail & Related papers (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
Large language models (LLMs) have recently emerged, demonstrating near-human-level performance in cognitive tasks.
We propose the concept of "generative AI-in-the-loop"
We believe that combining LLMs and ML models allows both to leverage their respective capabilities and achieve better results than either model alone.
arXiv Detail & Related papers (2024-06-06T17:25:07Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
Large Language Models (LLMs) have revolutionized language understanding and human-like text generation.
This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies.
We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications.
arXiv Detail & Related papers (2024-05-22T05:19:51Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
We propose an approach called MKS2, aimed at enhancing multimodal large language models (MLLMs)
Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently.
Our experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge.
arXiv Detail & Related papers (2023-11-27T12:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.