論文の概要: FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning
- arxiv url: http://arxiv.org/abs/2406.02355v1
- Date: Tue, 4 Jun 2024 14:34:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:50:54.783406
- Title: FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning
- Title(参考訳): FedDr+:フェデレーション学習のためのグローバルな特徴蒸留によるドット回帰の安定化
- Authors: Seongyoon Kim, Minchan Jeong, Sungnyun Kim, Sungwoo Cho, Sumyeong Ahn, Se-Young Yun,
- Abstract要約: フェデレートラーニング(FL)は、効果的なグローバルモデル開発のための重要なフレームワークとして登場した。
FLの主な課題はクライアントのドリフトであり、データの不均一性は分散した知識の集約を妨げる。
我々は,ドット回帰損失を用いた局所モデルアライメントを実現するFedDr+という新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 27.782676760198697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a pivotal framework for the development of effective global models (global FL) or personalized models (personalized FL) across clients with heterogeneous, non-iid data distribution. A key challenge in FL is client drift, where data heterogeneity impedes the aggregation of scattered knowledge. Recent studies have tackled the client drift issue by identifying significant divergence in the last classifier layer. To mitigate this divergence, strategies such as freezing the classifier weights and aligning the feature extractor accordingly have proven effective. Although the local alignment between classifier and feature extractor has been studied as a crucial factor in FL, we observe that it may lead the model to overemphasize the observed classes within each client. Thus, our objectives are twofold: (1) enhancing local alignment while (2) preserving the representation of unseen class samples. This approach aims to effectively integrate knowledge from individual clients, thereby improving performance for both global and personalized FL. To achieve this, we introduce a novel algorithm named FedDr+, which empowers local model alignment using dot-regression loss. FedDr+ freezes the classifier as a simplex ETF to align the features and improves aggregated global models by employing a feature distillation mechanism to retain information about unseen/missing classes. Consequently, we provide empirical evidence demonstrating that our algorithm surpasses existing methods that use a frozen classifier to boost alignment across the diverse distribution.
- Abstract(参考訳): フェデレートラーニング (FL) は, グローバルモデル(グローバルFL) やパーソナライズされたモデル(個人化FL) の開発において, 異種非IDデータ分布を持つクライアント間で重要なフレームワークとして登場した。
FLの主な課題はクライアントのドリフトであり、データの不均一性は分散した知識の集約を妨げる。
近年の研究では、最終分類器層における大きなばらつきを特定することで、クライアントのドリフト問題に対処している。
この分散を緩和するため、分類器重みの凍結や特徴抽出器の整列といった戦略が有効であることが証明された。
分類器と特徴抽出器の局所的なアライメントはFLにおいて重要な要素として研究されているが、各クライアントで観測されたクラスを過度に強調するためにモデルが導かれる可能性がある。
1) 局所的なアライメントの強化、(2) 目に見えないクラスサンプルの表現の保存。
このアプローチは、個々のクライアントからの知識を効果的に統合し、グローバルかつパーソナライズされたFLの性能を向上させることを目的としている。
これを実現するために,ドット-回帰損失を用いた局所モデルアライメントを実現するFedDr+というアルゴリズムを提案する。
FedDr+は、分類器を単純なETFとして凍結して特徴を整列させ、未確認/欠クラスに関する情報を保持するために特徴蒸留機構を用いて集約されたグローバルモデルを改善する。
その結果,本アルゴリズムは,凍結型分類器を用いて多種多様な分布のアライメントを向上する既存の手法を超越していることを示す実証的証拠が得られた。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
カスタムクライアントモデルをトレーニングするための選択されたアプローチが、グローバルモデルにどのように影響するかを示す。
KDとLwoF(LwoF)を併用して、改良されたパーソナライズドモデルを生成する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T11:12:57Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。