Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes
- URL: http://arxiv.org/abs/2409.12033v1
- Date: Wed, 18 Sep 2024 14:49:25 GMT
- Title: Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes
- Authors: Marco Montagna, Simone Scardapane, Lev Telyatnikov,
- Abstract summary: We propose a novel architecture designed to operate with simplicial complexes, utilizing the Mamba state-space model as its backbone.
Our approach generates sequences for the nodes based on the neighboring cells, enabling direct communication between all higher-order structures, regardless of their rank.
- Score: 4.787059527893628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks based on the message-passing (MP) mechanism are a dominant approach for handling graph-structured data. However, they are inherently limited to modeling only pairwise interactions, making it difficult to explicitly capture the complexity of systems with $n$-body relations. To address this, topological deep learning has emerged as a promising field for studying and modeling higher-order interactions using various topological domains, such as simplicial and cellular complexes. While these new domains provide powerful representations, they introduce new challenges, such as effectively modeling the interactions among higher-order structures through higher-order MP. Meanwhile, structured state-space sequence models have proven to be effective for sequence modeling and have recently been adapted for graph data by encoding the neighborhood of a node as a sequence, thereby avoiding the MP mechanism. In this work, we propose a novel architecture designed to operate with simplicial complexes, utilizing the Mamba state-space model as its backbone. Our approach generates sequences for the nodes based on the neighboring cells, enabling direct communication between all higher-order structures, regardless of their rank. We extensively validate our model, demonstrating that it achieves competitive performance compared to state-of-the-art models developed for simplicial complexes.
Related papers
- GrootVL: Tree Topology is All You Need in State Space Model [66.36757400689281]
GrootVL is a versatile multimodal framework that can be applied to both visual and textual tasks.
Our method significantly outperforms existing structured state space models on image classification, object detection and segmentation.
By fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.
arXiv Detail & Related papers (2024-06-04T15:09:29Z) - Learning From Simplicial Data Based on Random Walks and 1D Convolutions [6.629765271909503]
simplicial complex neural network learning architecture based on random walks and fast 1D convolutions.
We empirically evaluate SCRaWl on real-world datasets and show that it outperforms other simplicial neural networks.
arXiv Detail & Related papers (2024-04-04T13:27:22Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - Generalized Simplicial Attention Neural Networks [22.171364354867723]
We introduce Generalized Simplicial Attention Neural Networks (GSANs)
GSANs process data living on simplicial complexes using masked self-attentional layers.
These schemes learn how to combine data associated with neighbor simplices of consecutive order in a task-oriented fashion.
arXiv Detail & Related papers (2023-09-05T11:29:25Z) - Toward an Over-parameterized Direct-Fit Model of Visual Perception [5.4823225815317125]
In this paper, we highlight the difference in parallel and sequential binding mechanisms between simple and complex cells.
A new proposal for abstracting them into space partitioning and composition is developed.
We show how it leads to a dynamic programming (DP)-like approximate nearest-neighbor search based on $ell_infty$-optimization.
arXiv Detail & Related papers (2022-10-07T23:54:30Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
This work demonstrates a simple approach to reduce the computational and memory complexity of a large class of structured models.
Experiments with neural parameterized structured models for language modeling, polyphonic music modeling, unsupervised grammar induction, and video modeling show that our approach matches the accuracy of standard models at large state spaces.
arXiv Detail & Related papers (2022-01-08T00:47:50Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.