論文の概要: Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials
- arxiv url: http://arxiv.org/abs/2406.02416v1
- Date: Tue, 4 Jun 2024 15:27:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:40:59.257441
- Title: Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials
- Title(参考訳): 混合Dirichlet-Multinomialを用いたフェデレーションデータセットのモデル化
- Authors: Jonathan Scott, Áine Cahill,
- Abstract要約: 連合学習を用いたトレーニングは、標準的な集中型トレーニングよりも桁違い遅くなる可能性がある。
サーバサイドプロキシデータは、トレーニングシミュレーションの実行に使用することができる。
これらのシミュレーションが実際のフェデレーショントレーニングのダイナミクスを正確に反映していることを保証することは困難である。
- 参考スコア(独自算出の注目度): 0.93000873953175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In practice, training using federated learning can be orders of magnitude slower than standard centralized training. This severely limits the amount of experimentation and tuning that can be done, making it challenging to obtain good performance on a given task. Server-side proxy data can be used to run training simulations, for instance for hyperparameter tuning. This can greatly speed up the training pipeline by reducing the number of tuning runs to be performed overall on the true clients. However, it is challenging to ensure that these simulations accurately reflect the dynamics of the real federated training. In particular, the proxy data used for simulations often comes as a single centralized dataset without a partition into distinct clients, and partitioning this data in a naive way can lead to simulations that poorly reflect real federated training. In this paper we address the challenge of how to partition centralized data in a way that reflects the statistical heterogeneity of the true federated clients. We propose a fully federated, theoretically justified, algorithm that efficiently learns the distribution of the true clients and observe improved server-side simulations when using the inferred distribution to create simulated clients from the centralized data.
- Abstract(参考訳): 実際には、連合学習を用いたトレーニングは、標準的な集中学習よりも桁違いに遅い。
これにより、行うことができる実験やチューニングの量を大幅に制限し、与えられたタスクで優れたパフォーマンスを得るのが難しくなります。
サーバサイドプロキシデータは、例えばハイパーパラメータチューニングなど、トレーニングシミュレーションの実行に使用することができる。
これにより、真のクライアントで実行すべきチューニング実行回数を減らすことで、トレーニングパイプラインを大幅にスピードアップできる。
しかし、これらのシミュレーションが実際のフェデレーショントレーニングのダイナミクスを正確に反映していることを保証することは困難である。
特に、シミュレーションに使用されるプロキシデータは、個々のクライアントに分割せずに単一の集中データセットとして提供されることが多い。
本稿では、真のフェデレートされたクライアントの統計的不均一性を反映した方法で、集中型データを分割する方法の課題に対処する。
提案手法は, 実クライアントの分布を効率よく学習し, 推定分布を用いてサーバサイドのシミュレーションを改良し, 集中型データからシミュレーションされたクライアントを生成するアルゴリズムである。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning [56.21666819468249]
クライアントのリソース制約と通信コストは、フェデレートラーニングにおける大規模モデルのトレーニングに大きな問題を引き起こす。
Sparse-ProxSkipを導入し、スパース環境でのトレーニングとアクセラレーションを組み合わせた。
Sparse-ProxSkipの優れた性能を広範な実験で実証する。
論文 参考訳(メタデータ) (2024-05-31T05:21:12Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
フェデレートラーニング(FL)は、データを収集せずにプライバシを保ちながら、クライアントサイトの分散データを活用したモデルのトレーニングを可能にする。
FLの重要な課題の1つは、リソース制限されたエッジクライアントノードにおける計算の制限と通信帯域の低さである。
本稿では,学習前にデータ認識サブネットワークを選択することで,スパーストレーニングのプロセスを簡単にするSalient Gradsを提案する。
論文 参考訳(メタデータ) (2023-04-15T06:46:37Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Coded Computing for Low-Latency Federated Learning over Wireless Edge
Networks [10.395838711844892]
フェデレートラーニングは、データ共有やクライアントデータを集中型サーバに移行することなく、クライアントノードにあるデータからグローバルモデルをトレーニングすることを可能にする。
我々は,構造化符号化冗長性をフェデレーション学習に注入し,ストラグラーを緩和し,訓練手順を高速化する,新しい符号化コンピューティングフレームワーク,CodedFedLを提案する。
論文 参考訳(メタデータ) (2020-11-12T06:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。