Learning Image Priors through Patch-based Diffusion Models for Solving Inverse Problems
- URL: http://arxiv.org/abs/2406.02462v2
- Date: Wed, 30 Oct 2024 23:48:44 GMT
- Title: Learning Image Priors through Patch-based Diffusion Models for Solving Inverse Problems
- Authors: Jason Hu, Bowen Song, Xiaojian Xu, Liyue Shen, Jeffrey A. Fessler,
- Abstract summary: Diffusion models can learn strong image priors from underlying data distribution and use them to solve inverse problems, but the training process is computationally expensive and requires lots of data.
This paper proposes a method to learn an efficient data prior for the entire image by training diffusion models only on patches of images.
- Score: 15.298502168256519
- License:
- Abstract: Diffusion models can learn strong image priors from underlying data distribution and use them to solve inverse problems, but the training process is computationally expensive and requires lots of data. Such bottlenecks prevent most existing works from being feasible for high-dimensional and high-resolution data such as 3D images. This paper proposes a method to learn an efficient data prior for the entire image by training diffusion models only on patches of images. Specifically, we propose a patch-based position-aware diffusion inverse solver, called PaDIS, where we obtain the score function of the whole image through scores of patches and their positional encoding and utilize this as the prior for solving inverse problems. First of all, we show that this diffusion model achieves an improved memory efficiency and data efficiency while still maintaining the capability to generate entire images via positional encoding. Additionally, the proposed PaDIS model is highly flexible and can be plugged in with different diffusion inverse solvers (DIS). We demonstrate that the proposed PaDIS approach enables solving various inverse problems in both natural and medical image domains, including CT reconstruction, deblurring, and superresolution, given only patch-based priors. Notably, PaDIS outperforms previous DIS methods trained on entire image priors in the case of limited training data, demonstrating the data efficiency of our proposed approach by learning patch-based prior.
Related papers
- OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model [6.83367289911244]
Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks.
Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images.
arXiv Detail & Related papers (2024-04-16T06:39:37Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - Learning from small data sets: Patch-based regularizers in inverse
problems for image reconstruction [1.1650821883155187]
Recent advances in machine learning require a huge amount of data and computer capacity to train the networks.
Our paper addresses the issue of learning from small data sets by taking patches of very few images into account.
We show how we can achieve uncertainty quantification by approximating the posterior using Langevin Monte Carlo methods.
arXiv Detail & Related papers (2023-12-27T15:30:05Z) - Prompt-tuning latent diffusion models for inverse problems [72.13952857287794]
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors.
Our method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
arXiv Detail & Related papers (2023-10-02T11:31:48Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Variational Bayesian Imaging with an Efficient Surrogate Score-based Prior [7.155937118886449]
We consider ill-posed inverse imaging problems in which one aims for a clean image posterior given incomplete or noisy measurements.
Recent work turned score-based diffusion models into principled priors for solving ill-posed imaging problems.
Our proposed surrogate prior is based on the evidence lower bound of a score-based diffusion model.
arXiv Detail & Related papers (2023-09-05T04:55:10Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.