OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model
- URL: http://arxiv.org/abs/2404.10312v2
- Date: Wed, 17 Apr 2024 06:30:00 GMT
- Title: OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model
- Authors: Runyi Li, Xuhan Sheng, Weiqi Li, Jian Zhang,
- Abstract summary: Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks.
Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images.
- Score: 6.83367289911244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.
Related papers
- TDDSR: Single-Step Diffusion with Two Discriminators for Super Resolution [28.174638880324014]
We propose TDDSR, an efficient single-step diffusion-based super-resolution method.
Our method, distilled from a pre-trained teacher model and based on a diffusion network, performs super-resolution in a single step.
Experimental results demonstrate its effectiveness across real-world and face-specific SR tasks.
arXiv Detail & Related papers (2024-10-10T07:12:46Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Learning Image Priors through Patch-based Diffusion Models for Solving Inverse Problems [15.298502168256519]
Diffusion models can learn strong image priors from underlying data distribution and use them to solve inverse problems, but the training process is computationally expensive and requires lots of data.
This paper proposes a method to learn an efficient data prior for the entire image by training diffusion models only on patches of images.
arXiv Detail & Related papers (2024-06-04T16:30:37Z) - Perception-Distortion Balanced ADMM Optimization for Single-Image
Super-Resolution [29.19388490351459]
We propose a novel super-resolution model with a low-frequency constraint (LFc-SR)
We introduce an ADMM-based alternating optimization method for the non-trivial learning of the constrained model.
Experiments showed that our method, without cumbersome post-processing procedures, achieved the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-05T05:37:55Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.