論文の概要: Towards Efficient Mixture of Experts: A Holistic Study of Compression Techniques
- arxiv url: http://arxiv.org/abs/2406.02500v3
- Date: Mon, 17 Mar 2025 14:18:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 21:01:23.639253
- Title: Towards Efficient Mixture of Experts: A Holistic Study of Compression Techniques
- Title(参考訳): エキスパートの効率的な混合に向けて:圧縮技術に関する全体論的研究
- Authors: Shwai He, Daize Dong, Liang Ding, Ang Li,
- Abstract要約: 本稿では,Mixture of Expertsの圧縮技術に関する総合的研究を行い,効率性とスケーラビリティを両立させる。
我々は,全MoE層を除去するLayer Dropと,トランスフォーマーブロックを除去するBlock Dropを提案する。
また、個々の専門家を圧縮してパフォーマンスをさらに向上させ、Expert Trimmingとシームレスに統合できるExpert Slimmingを紹介します。
- 参考スコア(独自算出の注目度): 17.436189502801163
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scaling large language models has driven remarkable advancements across various domains, yet the continual increase in model size presents significant challenges for real-world deployment. The Mixture of Experts (MoE) architecture offers a promising solution by dynamically selecting and activating only a subset of experts during inference, thus substantially reducing computational costs while preserving high performance. Despite these benefits, MoE introduces new inefficiencies, such as excessive parameters and communication overhead. In this work, we present a holistic study of compression techniques for Mixture of Experts to enhance both efficiency and scalability. While recent efforts have focused on Expert Trimming, which reduces the number of experts, these approaches still suffer from considerable communication and computational costs. To address this, we propose more aggressive strategies, such as Layer Drop, which removes entire MoE layers, and Block Drop, which eliminates transformer blocks. Surprisingly, these aggressive pruning techniques not only preserve model performance but also substantially improve computation and memory efficiency. Furthermore, beyond Expert Trimming, we also introduce Expert Slimming, which compresses individual experts to further boost performance and can be seamlessly integrated with Expert Trimming. Extensive experimental results demonstrate the effectiveness of our proposed methods-Layer Drop and Block Drop-along with the comprehensive recipe that integrates Expert Slimming and Expert Trimming, achieving a 6.05x speedup with 77.1% reduced memory usage while maintaining over 92% of performance on Mixtral-8x7B. Our code is released at https://github.com/CASE-Lab-UMD/Unified-MoE-Compression.
- Abstract(参考訳): 大規模言語モデルのスケーリングは、さまざまな領域にわたる顕著な進歩を導いてきたが、モデルサイズの継続的な増加は、現実のデプロイメントにおいて大きな課題を呈している。
Mixture of Experts (MoE)アーキテクチャは、推論中に専門家のサブセットだけを動的に選択・活性化することで、高いパフォーマンスを維持しながら計算コストを大幅に削減することで、有望なソリューションを提供する。
これらの利点にもかかわらず、MoEは過剰なパラメータや通信オーバーヘッドといった新しい非効率性を導入している。
本研究では,Mixture of Expertsの圧縮技術に関する総合的研究を行い,効率性とスケーラビリティを両立させる。
近年の取り組みは専門家の数を減らしたエキスパートトリミングに重点を置いているが、これらのアプローチは依然としてかなりのコミュニケーションと計算コストに悩まされている。
この問題に対処するために、MoE層全体を除去するLayer Dropや、トランスフォーマーブロックを除去するBlock Dropなど、より積極的な戦略を提案する。
驚くべきことに、これらのアグレッシブプルーニング技術はモデル性能を保ちながら、計算とメモリ効率を大幅に改善する。
さらに、Expert Trimming以外にも、個々の専門家を圧縮してパフォーマンスをさらに向上し、Expert Trimmingとシームレスに統合できるExpert Slimmingも導入しています。
その結果,Mixtral-8x7Bの92%以上の性能を維持しながら,6.05倍の高速化を実現し,メモリ使用量の77.1%削減を実現した。
私たちのコードはhttps://github.com/CASE-Lab-UMD/Unified-MoE-Compressionで公開されています。
関連論文リスト
- Efficiently Editing Mixture-of-Experts Models with Compressed Experts [22.868004724309845]
完全エキスパートのコンパクト表現として機能する軽量モジュールである圧縮された専門家の概念を提案する。
我々のアプローチは、他の補助活性化専門家を圧縮専門家に置き換えながら、最も重要な専門家を保護します。
論文 参考訳(メタデータ) (2025-03-01T22:00:03Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
フレキシブルで効率的なMoE推論を実現するための混合精度専門家オフロードシステムHOBBITを提案する。
キーとなる洞察は、重要でないキャッシュミスの専門家を低い精度で動的に置き換えることで、専門家のロード遅延を大幅に削減できるということです。
HOBBITは、最先端のMoEオフロードシステムと比較して、デコードで最大9.93倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-11-03T04:25:46Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlowは、柔軟なルーティングを調整し、CPUとGPU間の効率的な専門家スケジューリングを可能にすることで、推論効率を向上させるように設計されている。
実験により、ExpertFlowは最大93.72%のGPUメモリを節約し、ベースライン法に比べて推論速度を2~10倍に向上することを示した。
論文 参考訳(メタデータ) (2024-10-23T15:24:54Z) - EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search [33.86918407429272]
本稿では, 与えられた入力範囲において, 確実に最適である動的圧縮に対する新しい, 汎用的なアプローチを提案する。
これらの理論的保証は、Llama, Mistral, Phiモデルの動的圧縮に高い競争力を与えることを示す。
論文 参考訳(メタデータ) (2024-10-18T17:46:37Z) - Mixture Compressor for Mixture-of-Experts LLMs Gains More [71.0473038084673]
我々は、Mixture-of-Experts Large Language Model (MoE-LLMs) のためのトレーニング不要なMixture-Compressorを提案する。
我々のMCは静的量子化と動的プルーニングを統合し、より少ない精度でMoE-LLMの極端な圧縮を実現する。
例えば、2.54ビットでは、MCは76.6%を圧縮し、平均精度損失は3.8%である。
論文 参考訳(メタデータ) (2024-10-08T18:09:38Z) - AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference [13.263938935671646]
AdapMoEは、効率的なMoE推論のためのアルゴリズムとシステムの共同設計フレームワークである。
AdapMoEは、オンデマンドのロードオーバーヘッドを減らすために、アダプティブなエキスパートゲーティングと管理機能を備えている。
AdapMoEは既存の技術より一貫して優れており、アクティベートされた専門家の平均数が25%減少し、精度を低下させることなく1.35倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-08-19T03:27:15Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
本稿では,新しい構造化圧縮フレームワークである textbfModular bfDecomposition (MoDeGPT) を紹介する。
MoDeGPTはTransformerブロックを行列対からなるモジュールに分割し、隠れた次元を減らす。
本実験では, 後方伝播を伴わないMoDeGPTが, 従来の圧縮手法と一致するか, あるいは超えていることを示す。
論文 参考訳(メタデータ) (2024-08-19T01:30:14Z) - Mixture of A Million Experts [1.240096657086732]
本稿では,多彩な専門家プールからのスパース検索に製品キー技術を利用する新しい層設計PEERを紹介する。
言語モデリングタスクの実験では、PEER層が高密度FFWや粗粒のMoEよりもパフォーマンス・計算トレードオフの点で優れていることが示された。
論文 参考訳(メタデータ) (2024-07-04T20:59:20Z) - Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs [30.07344792770254]
我々は,SMoEモデルのエキスパートの育成を促進するため,EEP(Efficient Expert Pruning)と呼ばれる勾配のない進化戦略を導入する。
EEPは、ダウンストリームタスクのパフォーマンスを維持したり改善したりしながら、モデル推論(すなわち、勾配計算をしない)とより大きな疎性にのみ依存する。
実験の結果,Mixtral 8times7$B-Instructのエキスパートの75%が,性能損失を最小限に抑えたパラメータの大幅な削減を達成できた。
論文 参考訳(メタデータ) (2024-07-01T03:57:35Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
大規模言語モデル(LLM)は、より高速な推論、メモリフットプリントの縮小、ローカルデプロイメントを可能にする。
2つの標準的な圧縮手法はプルーニングと量子化であり、前者はモデル層における冗長な接続を排除し、後者はより少ないビットでモデルパラメータを表現する。
LLM圧縮に関する既存の研究は、主にパープレキシティやダウンストリームタスクの精度といった一般的な指標のパフォーマンスに焦点を当てている。
パラメトリックな知識を測定するような、よりきめ細かいメトリクスは、いまだにかなり過小評価されている。
論文 参考訳(メタデータ) (2023-12-01T22:27:12Z) - Merging Experts into One: Improving Computational Efficiency of Mixture
of Experts [71.44422347502409]
スパースミキチャー・オブ・エキスパート(MoE)は、パラメータの小さなサブセットをアクティベートすることでコストを削減することができる。
計算コストを大幅に高めることなく、より多くの専門家を追加するという利点を維持できるだろうか?
そこで我々は,textbftexttMerging Experts into One (MEO) という計算効率のよい手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T13:28:42Z) - Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy [84.11508381847929]
わずかに活性化されたMixture-of-Experts(SMoE)は、ニューラルネットワークの学習能力のスケールアップを約束している。
ルーティング統計を利用したM-SMoEを提案する。
我々のMC-SMoEは最大80%のメモリと20%のFLOPを削減でき、性能は実質的に損なわれない。
論文 参考訳(メタデータ) (2023-10-02T16:51:32Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE)は、安価な計算オーバーヘッドを持つ有望なスケーリング能力のため、大きな関心を集めている。
MoEは密度の高い層をスパースの専門家に変換し、ゲートルーティングネットワークを使用して専門家を条件付きで活性化させる。
しかし、専門家の数が増加するにつれて、乱雑なパラメータを持つMoEはデータアロケーションの過度な調整とスパースに悩まされる。
論文 参考訳(メタデータ) (2022-07-19T06:09:55Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) モデルは大規模な事前トレーニングには強力である。
MoEはクラウドやモバイル環境にデプロイするのは難しい。
本稿では,目標下流タスクの非専門的専門家を段階的に降ろす方法を提案する。
論文 参考訳(メタデータ) (2022-06-01T07:09:01Z) - Compression of Generative Pre-trained Language Models via Quantization [62.80110048377957]
従来の量子化手法は, テクスモジニアス単語の埋め込みによって生成タスクに失敗することがわかった。
本稿では,区別可能な単語埋め込みを学習するためのトークンレベルのコントラスト蒸留法と,異なるモジュールに対して量子化器を適応させるモジュールワイドダイナミックスケーリングを提案する。
論文 参考訳(メタデータ) (2022-03-21T02:11:35Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
既存のモデル圧縮アプローチでは、さまざまなハードウェアデプロイメントに対応するために、さまざまな制約にまたがる再圧縮や微調整が必要となる。
圧縮を一度行い、至るところに展開するための新しいアプローチであるYOCO-BERTを提案する。
最先端のアルゴリズムと比較すると、YOCO-BERTはよりコンパクトなモデルを提供するが、GLUEベンチマークの平均精度は2.1%-4.5%向上している。
論文 参考訳(メタデータ) (2021-06-04T12:17:44Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
スパース最適化の最近の進歩に基づくモデル圧縮フレームワークを提案する。
我々は、CIFAR10のVGG16とImageNetのResNet50で、同じレベルの精度で、最大7.2倍と2.9倍のFLOPを削減できる。
論文 参考訳(メタデータ) (2020-11-10T03:03:55Z) - GAN Slimming: All-in-One GAN Compression by A Unified Optimization
Framework [94.26938614206689]
本稿では,GANスライミング(GAN Slimming)と呼ばれる,GAN圧縮のための複数の圧縮手段を組み合わせた最初の統一最適化フレームワークを提案する。
我々はGSを用いて、最先端のトランスファーネットワークであるCartoonGANを最大47倍圧縮し、視覚的品質を最小限に抑える。
論文 参考訳(メタデータ) (2020-08-25T14:39:42Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。