Uncertainty of Joint Neural Contextual Bandit
- URL: http://arxiv.org/abs/2406.02515v1
- Date: Tue, 4 Jun 2024 17:38:24 GMT
- Title: Uncertainty of Joint Neural Contextual Bandit
- Authors: Hongbo Guo, Zheqing Zhu,
- Abstract summary: This paper focuses on a joint neural contextual bandit solution which serves all recommending items in one model.
The tuning of the parameter $alpha$ is typically complex in practice due to its nature.
We provide both theoretical analysis and experimental findings regarding the uncertainty $sigma$ of the joint neural contextual bandit model.
- Score: 0.41436032949434404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contextual bandit learning is increasingly favored in modern large-scale recommendation systems. To better utlize the contextual information and available user or item features, the integration of neural networks have been introduced to enhance contextual bandit learning and has triggered significant interest from both academia and industry. However, a major challenge arises when implementing a disjoint neural contextual bandit solution in large-scale recommendation systems, where each item or user may correspond to a separate bandit arm. The huge number of items to recommend poses a significant hurdle for real world production deployment. This paper focuses on a joint neural contextual bandit solution which serves all recommending items in one single model. The output consists of a predicted reward $\mu$, an uncertainty $\sigma$ and a hyper-parameter $\alpha$ which balances exploitation and exploration, e.g., $\mu + \alpha \sigma$. The tuning of the parameter $\alpha$ is typically heuristic and complex in practice due to its stochastic nature. To address this challenge, we provide both theoretical analysis and experimental findings regarding the uncertainty $\sigma$ of the joint neural contextual bandit model. Our analysis reveals that $\alpha$ demonstrates an approximate square root relationship with the size of the last hidden layer $F$ and inverse square root relationship with the amount of training data $N$, i.e., $\sigma \propto \sqrt{\frac{F}{N}}$. The experiments, conducted with real industrial data, align with the theoretical analysis, help understanding model behaviors and assist the hyper-parameter tuning during both offline training and online deployment.
Related papers
- Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints.
Our algorithm converges to a first-order stationary point (FOSP) at the rate of $mathcalOleft(T-2/3right)$.
In the sample-based setting, we demonstrate that, with high probability, our algorithm requires $widetildemathcalOleft(epsilon-3.5right)$ samples to achieve an $epsilon$-FOSP.
arXiv Detail & Related papers (2023-05-27T20:08:35Z) - Towards understanding neural collapse in supervised contrastive learning with the information bottleneck method [26.874007846077884]
Neural collapse describes the geometry of activation in the final layer of a deep neural network when it is trained beyond performance plateaus.
We demonstrate that neural collapse leads to good generalization specifically when it approaches an optimal IB solution of the classification problem.
arXiv Detail & Related papers (2023-05-19T18:41:17Z) - Chaos Theory and Adversarial Robustness [0.0]
This paper uses ideas from Chaos Theory to explain, analyze, and quantify the degree to which neural networks are susceptible to or robust against adversarial attacks.
We present a new metric, the "susceptibility ratio," given by $hat Psi(h, theta)$, which captures how greatly a model's output will be changed by perturbations to a given input.
arXiv Detail & Related papers (2022-10-20T03:39:44Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
We show that a $tildeO(tildedsqrtT)$ regret upper bound is still achievable under standard regularity conditions.
We perturb the rewards when updating the neural network to eliminate the need of explicit exploration.
arXiv Detail & Related papers (2022-01-24T19:10:22Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - Neural Contextual Bandits without Regret [47.73483756447701]
We propose algorithms for contextual bandits harnessing neural networks to approximate the unknown reward function.
We show that our approach converges to the optimal policy at a $tildemathcalO(T-1/2d)$ rate, where $d$ is the dimension of the context.
arXiv Detail & Related papers (2021-07-07T11:11:34Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.