RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots
- URL: http://arxiv.org/abs/2406.02523v1
- Date: Tue, 4 Jun 2024 17:41:31 GMT
- Title: RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots
- Authors: Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay Mandlekar, Yuke Zhu,
- Abstract summary: We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments.
We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances.
Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning.
- Score: 25.650235551519952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Artificial Intelligence (AI) have largely been propelled by scaling. In Robotics, scaling is hindered by the lack of access to massive robot datasets. We advocate using realistic physical simulation as a means to scale environments, tasks, and datasets for robot learning methods. We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments. RoboCasa features realistic and diverse scenes focusing on kitchen environments. We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances. We enrich the realism and diversity of our simulation with generative AI tools, such as object assets from text-to-3D models and environment textures from text-to-image models. We design a set of 100 tasks for systematic evaluation, including composite tasks generated by the guidance of large language models. To facilitate learning, we provide high-quality human demonstrations and integrate automated trajectory generation methods to substantially enlarge our datasets with minimal human burden. Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning and show great promise in harnessing simulation data in real-world tasks. Videos and open-source code are available at https://robocasa.ai/
Related papers
- GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - ManiFoundation Model for General-Purpose Robotic Manipulation of Contact Synthesis with Arbitrary Objects and Robots [24.035706461949715]
There is a pressing need to develop a model that enables general-purpose robots to undertake a broad spectrum of manipulation tasks.
Our work introduces a comprehensive framework to develop a foundation model for general robotic manipulation.
Our model achieves average success rates of around 90%.
arXiv Detail & Related papers (2024-05-11T09:18:37Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Gen2Sim: Scaling up Robot Learning in Simulation with Generative Models [17.757495961816783]
Gen2Sim is a method for scaling up robot skill learning in simulation by automating generation of 3D assets, task descriptions, task decompositions and reward functions.
Our work contributes hundreds of simulated assets, tasks and demonstrations, taking a step towards fully autonomous robotic manipulation skill acquisition in simulation.
arXiv Detail & Related papers (2023-10-27T17:55:32Z) - MimicGen: A Data Generation System for Scalable Robot Learning using
Human Demonstrations [55.549956643032836]
MimicGen is a system for automatically synthesizing large-scale, rich datasets from only a small number of human demonstrations.
We show that robot agents can be effectively trained on this generated dataset by imitation learning to achieve strong performance in long-horizon and high-precision tasks.
arXiv Detail & Related papers (2023-10-26T17:17:31Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.