GRUtopia: Dream General Robots in a City at Scale
- URL: http://arxiv.org/abs/2407.10943v1
- Date: Mon, 15 Jul 2024 17:40:46 GMT
- Title: GRUtopia: Dream General Robots in a City at Scale
- Authors: Hanqing Wang, Jiahe Chen, Wensi Huang, Qingwei Ben, Tai Wang, Boyu Mi, Tao Huang, Siheng Zhao, Yilun Chen, Sizhe Yang, Peizhou Cao, Wenye Yu, Zichao Ye, Jialun Li, Junfeng Long, Zirui Wang, Huiling Wang, Ying Zhao, Zhongying Tu, Yu Qiao, Dahua Lin, Jiangmiao Pang,
- Abstract summary: This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
- Score: 65.08318324604116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have been exploring the scaling laws in the field of Embodied AI. Given the prohibitive costs of collecting real-world data, we believe the Simulation-to-Real (Sim2Real) paradigm is a crucial step for scaling the learning of embodied models. This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots. It features several advancements: (a) The scene dataset, GRScenes, includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments. In contrast to previous works mainly focusing on home, GRScenes covers 89 diverse scene categories, bridging the gap of service-oriented environments where general robots would be initially deployed. (b) GRResidents, a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction, task generation, and task assignment, thus simulating social scenarios for embodied AI applications. (c) The benchmark, GRBench, supports various robots but focuses on legged robots as primary agents and poses moderately challenging tasks involving Object Loco-Navigation, Social Loco-Navigation, and Loco-Manipulation. We hope that this work can alleviate the scarcity of high-quality data in this field and provide a more comprehensive assessment of Embodied AI research. The project is available at https://github.com/OpenRobotLab/GRUtopia.
Related papers
- RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots [25.650235551519952]
We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments.
We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances.
Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning.
arXiv Detail & Related papers (2024-06-04T17:41:31Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
Domain-agnostic Video Discriminator (DVD) learns multitask reward functions by training a discriminator to classify whether two videos are performing the same task.
DVD can generalize by virtue of learning from a small amount of robot data with a broad dataset of human videos.
DVD can be combined with visual model predictive control to solve robotic manipulation tasks on a real WidowX200 robot in an unseen environment from a single human demo.
arXiv Detail & Related papers (2021-03-31T05:25:05Z) - A Framework for Learning Predator-prey Agents from Simulation to Real
World [0.0]
We propose an evolutionary predatorprey robot system which can be generally implemented from simulation to the real world.
Both the predators and prey are co-evolved by NeuroEvolution of Augmenting Topologies (NEAT) to learn the expected behaviours.
For the convenience of users, the source code and videos of the simulated and real world are published on Github.
arXiv Detail & Related papers (2020-10-29T17:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.