論文の概要: Enhancing 2D Representation Learning with a 3D Prior
- arxiv url: http://arxiv.org/abs/2406.02535v1
- Date: Tue, 4 Jun 2024 17:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 14:50:37.037101
- Title: Enhancing 2D Representation Learning with a 3D Prior
- Title(参考訳): 3次元事前学習による2次元表現学習の強化
- Authors: Mehmet Aygün, Prithviraj Dhar, Zhicheng Yan, Oisin Mac Aodha, Rakesh Ranjan,
- Abstract要約: 視覚データの堅牢で効果的な表現を学習することは、コンピュータビジョンの基本的な課題である。
従来、これはラベル付きデータによるトレーニングモデルによって達成される。
本稿では,3次元構造を明示的に強制することで,既存の自己管理手法を強化するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 21.523007105586217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning robust and effective representations of visual data is a fundamental task in computer vision. Traditionally, this is achieved by training models with labeled data which can be expensive to obtain. Self-supervised learning attempts to circumvent the requirement for labeled data by learning representations from raw unlabeled visual data alone. However, unlike humans who obtain rich 3D information from their binocular vision and through motion, the majority of current self-supervised methods are tasked with learning from monocular 2D image collections. This is noteworthy as it has been demonstrated that shape-centric visual processing is more robust compared to texture-biased automated methods. Inspired by this, we propose a new approach for strengthening existing self-supervised methods by explicitly enforcing a strong 3D structural prior directly into the model during training. Through experiments, across a range of datasets, we demonstrate that our 3D aware representations are more robust compared to conventional self-supervised baselines.
- Abstract(参考訳): 視覚データの堅牢で効果的な表現を学習することは、コンピュータビジョンの基本的な課題である。
従来、これはラベル付きデータによるトレーニングモデルによって達成される。
自己教師付き学習は、未ラベルのビジュアルデータのみから表現を学習することでラベル付きデータの要求を回避しようとする。
しかし、両眼視力や動きを通してリッチな3D情報を得る人間とは異なり、現在の自己監督手法の大半は、単眼の2D画像収集から学ぶことを任務としている。
これは、形状中心の視覚処理が、テクスチャバイアスの自動化手法よりも堅牢であることを示すものとして注目に値する。
そこで本研究では,学習中にモデルに直接強靭な3次元構造を強制することにより,既存の自己監督手法を強化する新しい手法を提案する。
実験を通じて、さまざまなデータセットを通して、従来の自己教師付きベースラインと比較して、我々の3D認識表現がより堅牢であることを示す。
関連論文リスト
- Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [11.090775523892074]
我々は、高密度な注釈付きデータへの依存を軽減するために、新しい半教師付きフレームワークを導入する。
提案手法は2次元基礎モデルを用いて3次元シーンの幾何学的・意味的手がかりを生成する。
本手法は,10%のラベル付きデータを用いて全教師付き性能の最大85%を達成する。
論文 参考訳(メタデータ) (2024-08-21T12:13:18Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels [69.55622471172941]
CLIPのような大規模ビジョン2D視覚言語モデルは、一般化可能な(オープン語彙)3D視覚モデルを学ぶために3Dエンコーダと整列することができる。
ゼロショット3Dビジョンモデルのラベルなし分類性能を改善するために、クロスモーダル自己訓練(Cross-MoST: Cross-Modal Self-Training)を提案する。
論文 参考訳(メタデータ) (2024-04-15T21:30:50Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Weakly Supervised Monocular 3D Object Detection using Multi-View
Projection and Direction Consistency [78.76508318592552]
モノクロ3Dオブジェクト検出は、その容易なアプリケーションのための自動駆動において、主流のアプローチとなっている。
現在のほとんどの方法は、トレーニングフェーズで使用される真実をラベル付けするために、まだ3Dポイントのクラウドデータに依存しています。
画像にマークされた2次元ラベルだけでモデルを訓練できる,弱教師付きモノクル3次元オブジェクト検出法を提案する。
論文 参考訳(メタデータ) (2023-03-15T15:14:00Z) - Visual Reinforcement Learning with Self-Supervised 3D Representations [15.991546692872841]
運動制御のための3次元表現の自己教師型学習のための統一的な枠組みを提案する。
本手法は,2次元表現学習法と比較して,シミュレーション操作タスクにおけるサンプル効率の向上を享受する。
論文 参考訳(メタデータ) (2022-10-13T17:59:55Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
本稿では,下流3次元視覚タスクのための汎用クラウドバックボーンモデルを学習するために,自己指導型トレーニング戦略を提案する。
我々の主な貢献は、学習の流れと動きの表現を活用し、自己教師付きバックボーンと3D検出ヘッドを組み合わせることである。
KITTIとnuScenesベンチマークの実験により、提案した自己教師付き事前学習は3次元検出性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2022-05-02T07:53:29Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
ラベルのないタスクから学習できる時間的表現学習フレームワークを導入する。
幼児が野生の視覚的データからどのように学ぶかに触発され、3Dデータから派生した豊かな手がかりを探索する。
STRLは3Dポイントクラウドシーケンスから2つの時間的関連フレームを入力として、空間データ拡張で変換し、不変表現を自己指導的に学習する。
論文 参考訳(メタデータ) (2021-09-01T04:17:11Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
本研究では,3次元表現学習の研究を支援することを目的とする。
教師なし事前学習が3Dシーンの大規模なソースセットに与える影響を計測する。
論文 参考訳(メタデータ) (2020-07-21T17:59:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。