Dreamguider: Improved Training free Diffusion-based Conditional Generation
- URL: http://arxiv.org/abs/2406.02549v1
- Date: Tue, 4 Jun 2024 17:59:32 GMT
- Title: Dreamguider: Improved Training free Diffusion-based Conditional Generation
- Authors: Nithin Gopalakrishnan Nair, Vishal M Patel,
- Abstract summary: Dreamguider is a method that enables inference-time guidance without compute-heavy backpropagation through the diffusion network.
We present experiments using Dreamguider on multiple tasks across multiple datasets and models to show the effectiveness of the proposed modules.
- Score: 31.68823843900196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as a formidable tool for training-free conditional generation.However, a key hurdle in inference-time guidance techniques is the need for compute-heavy backpropagation through the diffusion network for estimating the guidance direction. Moreover, these techniques often require handcrafted parameter tuning on a case-by-case basis. Although some recent works have introduced minimal compute methods for linear inverse problems, a generic lightweight guidance solution to both linear and non-linear guidance problems is still missing. To this end, we propose Dreamguider, a method that enables inference-time guidance without compute-heavy backpropagation through the diffusion network. The key idea is to regulate the gradient flow through a time-varying factor. Moreover, we propose an empirical guidance scale that works for a wide variety of tasks, hence removing the need for handcrafted parameter tuning. We further introduce an effective lightweight augmentation strategy that significantly boosts the performance during inference-time guidance. We present experiments using Dreamguider on multiple tasks across multiple datasets and models to show the effectiveness of the proposed modules. To facilitate further research, we will make the code public after the review process.
Related papers
- Prompt Tuning with Diffusion for Few-Shot Pre-trained Policy Generalization [55.14484317645865]
We develop a conditional diffusion model to produce exceptional quality prompts for offline reinforcement learning tasks.
We show that the Prompt diffuser is a robust and effective tool for the prompt-tuning process, demonstrating strong performance in the meta-RL tasks.
arXiv Detail & Related papers (2024-11-02T07:38:02Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Adding Conditional Control to Diffusion Models with Reinforcement Learning [59.295203871547336]
Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples.
This work presents a novel method based on reinforcement learning (RL) to add additional controls, leveraging an offline dataset.
arXiv Detail & Related papers (2024-06-17T22:00:26Z) - Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following [21.81411085058986]
Reward-gradient guided denoising generates trajectories that maximize both a differentiable reward function and the likelihood under the data distribution captured by a diffusion model.
We propose DiffusionES, a method that combines gradient-free optimization with trajectory denoising.
We show that DiffusionES achieves state-of-the-art performance on nuPlan, an established closed-loop planning benchmark for autonomous driving.
arXiv Detail & Related papers (2024-02-09T17:18:33Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
Conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training.
We propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework.
arXiv Detail & Related papers (2023-11-28T02:08:06Z) - Elucidating The Design Space of Classifier-Guided Diffusion Generation [17.704873767509557]
We show that it is possible to achieve significant performance improvements over existing guidance schemes by leveraging off-the-shelf classifiers in a training-free fashion.
Our proposed approach has great potential and can be readily scaled up to text-to-image generation tasks.
arXiv Detail & Related papers (2023-10-17T14:34:58Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Training-free Linear Image Inverses via Flows [17.291903204982326]
We propose a training-free method for solving linear inverse problems by using pretrained flow models.
Our approach requires no problem-specific tuning across an extensive suite of noisy linear inverse problems on high-dimensional datasets.
arXiv Detail & Related papers (2023-09-25T22:13:16Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.