論文の概要: Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2406.02614v1
- Date: Mon, 3 Jun 2024 08:42:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:29:51.946219
- Title: Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting
- Title(参考訳): 都市間ファウショット交通予報のための周波数強化事前学習
- Authors: Zhanyu Liu, Jianrong Ding, Guanjie Zheng,
- Abstract要約: 都市間数発の予測という概念が現実的なアプローチとして現れている。
FEPCrossは事前訓練段階と微調整段階を有する。
実世界の交通データセット上で実施された実証的な評価は、FEPCrossの異常な有効性を検証する。
- 参考スコア(独自算出の注目度): 7.4525875528900665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Intelligent Transportation Systems (ITS) relies on accurate traffic forecasting to enable various downstream applications. However, developing cities often face challenges in collecting sufficient training traffic data due to limited resources and outdated infrastructure. Recognizing this obstacle, the concept of cross-city few-shot forecasting has emerged as a viable approach. While previous cross-city few-shot forecasting methods ignore the frequency similarity between cities, we have made an observation that the traffic data is more similar in the frequency domain between cities. Based on this fact, we propose a \textbf{F}requency \textbf{E}nhanced \textbf{P}re-training Framework for \textbf{Cross}-city Few-shot Forecasting (\textbf{FEPCross}). FEPCross has a pre-training stage and a fine-tuning stage. In the pre-training stage, we propose a novel Cross-Domain Spatial-Temporal Encoder that incorporates the information of the time and frequency domain and trains it with self-supervised tasks encompassing reconstruction and contrastive objectives. In the fine-tuning stage, we design modules to enrich training samples and maintain a momentum-updated graph structure, thereby mitigating the risk of overfitting to the few-shot training data. Empirical evaluations performed on real-world traffic datasets validate the exceptional efficacy of FEPCross, outperforming existing approaches of diverse categories and demonstrating characteristics that foster the progress of cross-city few-shot forecasting.
- Abstract(参考訳): インテリジェントトランスポーテーションシステム(ITS)の分野は、様々な下流アプリケーションを実現するために正確なトラフィック予測に依存している。
しかし、開発途上国は、限られた資源と時代遅れのインフラのために、十分なトレーニングトラフィックデータを収集する上で、しばしば課題に直面している。
この障害を認識して、都市間数発の予測という概念が実現可能なアプローチとして浮上した。
従来の都市間数ショット予測手法では、都市間の周波数類似性は無視されていたが、都市間の周波数領域では、交通データがより類似していることが観察された。
この事実に基づき、我々は \textbf{F}requency \textbf{E}nhanced \textbf{P}re-training Framework for \textbf{Cross}-city Few-shot Forecasting (\textbf{FEPCross})を提案する。
FEPCrossは事前訓練段階と微調整段階を有する。
事前学習段階において,時間・周波数領域の情報を含むクロスドメイン空間・テンポラルエンコーダを提案する。
微調整の段階では、トレーニングサンプルを豊かにし、モーメント更新されたグラフ構造を維持するモジュールを設計し、これにより、数ショットのトレーニングデータに過度に適合するリスクを軽減する。
実世界の交通データセット上で実施された実証的な評価は、FEPCrossの異常な有効性を検証し、多様なカテゴリの既存アプローチを上回り、都市間数ショット予測の進行を促進する特性を示す。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction [22.265095967530296]
FlashSTは、トレーニング済みのモデルに適応して、さまざまなデータセットの特定の特性を一般化するフレームワークである。
事前トレーニングとダウンストリームデータのシフトを捉え、さまざまなシナリオへの効果的な適応を促進する。
実証的な評価は、さまざまなシナリオにおけるFlashSTの有効性を示している。
論文 参考訳(メタデータ) (2024-05-28T07:18:52Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
本稿では,交通渋滞イベント予測のための時間グラフニューラルポイントプロセスフレームワークSTNPPを提案する。
提案手法は,既存の最先端手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-11-15T01:22:47Z) - Test-Time Compensated Representation Learning for Extreme Traffic
Forecasting [13.859278899032846]
混雑とラッシュアワーは、隣接する時間帯に様々な交差点で車両の速度の相関が低くなる可能性がある。
既存の手法では、テストフェーズ中に、最近および完全に分解されたトレーニングデータに基づいて、将来のシリーズを予測するのが一般的である。
マルチヘッド空間トランスモデルを用いたテスト時間表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-16T18:46:34Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - A Spatial-Temporal Attention Multi-Graph Convolution Network for
Ride-Hailing Demand Prediction Based on Periodicity with Offset [9.897431292540393]
ライドシェアリングは都市交通の中心となっている。
配車サービスの効率を向上させるためには、交通需要の正確な予測が根本的な課題である。
本稿では,ネットワーク構造とデータセットの定式化の両面からこの問題に対処する。
論文 参考訳(メタデータ) (2022-03-23T16:03:55Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
建設工事の影響下での交通速度予測モデルを提案する。
このモデルは、強力なアテンションベースの時間グラフ畳み込みアーキテクチャに基づいているが、様々なチャネルを利用して異なる情報ソースを統合する。
このモデルは、2つのベンチマークデータセットと、北バージニアの散らかった道路の角で収集した新しいデータセットで評価されている。
論文 参考訳(メタデータ) (2021-10-04T16:07:37Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
本稿では,交通機関が交通の流れを早期に制御し,渋滞を防止するための短期交通流予測フレームワークを提案する。
我々は,過去の流れデータと,コネクテッド・ビークル(CV)技術によって提供されるリアルタイムフィードや軌道データといった革新的な特徴に基づいて,将来の道路セグメントにおける流れを予測する。
本手法は, 流れの予測, CVが軌道に沿ったセグメントに現実的に遭遇する様々な事象の影響を組み込むことによって, 高度なモデリングを可能にすることを示す。
論文 参考訳(メタデータ) (2020-07-10T16:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。