論文の概要: Self-Trained Model for ECG Complex Delineation
- arxiv url: http://arxiv.org/abs/2406.02711v1
- Date: Tue, 4 Jun 2024 18:54:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:08:11.236411
- Title: Self-Trained Model for ECG Complex Delineation
- Title(参考訳): ECGコンプレックスの自己学習モデル
- Authors: Aram Avetisyan, Nikolas Khachaturov, Ariana Asatryan, Shahane Tigranyan, Yury Markin,
- Abstract要約: 心電図(ECG)のデライン化は、正確な診断で心臓科医を支援する上で重要な役割を担っている。
我々は,ECGデライン化のためのデータセットを導入し,大量のラベルのないECGデータを活用することを目的とした,新たな自己学習手法を提案する。
我々のアプローチでは、データセットでトレーニングされたニューラルネットワークを使用してラベルなしデータの擬似ラベル付けを行い、その後、新たにラベル付けされたサンプル上でモデルをトレーニングし、デライン化の品質を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electrocardiogram (ECG) delineation plays a crucial role in assisting cardiologists with accurate diagnoses. Prior research studies have explored various methods, including the application of deep learning techniques, to achieve precise delineation. However, existing approaches face limitations primarily related to dataset size and robustness. In this paper, we introduce a dataset for ECG delineation and propose a novel self-trained method aimed at leveraging a vast amount of unlabeled ECG data. Our approach involves the pseudolabeling of unlabeled data using a neural network trained on our dataset. Subsequently, we train the model on the newly labeled samples to enhance the quality of delineation. We conduct experiments demonstrating that our dataset is a valuable resource for training robust models and that our proposed self-trained method improves the prediction quality of ECG delineation.
- Abstract(参考訳): 心電図(ECG)のデライン化は、正確な診断で心臓科医を支援する上で重要な役割を担っている。
先行研究は、深層学習技術の適用を含む様々な手法を探求し、正確な記述を実現している。
しかし、既存のアプローチは、主にデータセットのサイズと堅牢性に関連する制限に直面している。
本稿では,ECGデライン化のためのデータセットを導入し,大量の未ラベルECGデータを活用することを目的とした,新たな自己学習手法を提案する。
私たちのアプローチでは、データセットでトレーニングされたニューラルネットワークを使用して、ラベルなしデータの擬似ラベル付けを行います。
その後,新たにラベル付けされたサンプルを用いて,デライン化の質を高めるためにモデルを訓練する。
我々は、我々のデータセットがロバストモデルのトレーニングに有用な資源であること、そして、提案した自己学習手法がECGデラインの予測品質を改善することを実証する実験を行った。
関連論文リスト
- Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
自己教師付き学習(SSL)法で強化された基礎モデルを用いることで、心電図(ECG)解析に対する革新的なアプローチが提示される。
本研究は、生成学習やコントラスト学習を含むSSL手法を利用して、ECGの基礎モデルを包括的に評価する。
心臓診断の精度と信頼性を向上させる基礎モデルのためのハイブリッドラーニング(HL)を開発した。
論文 参考訳(メタデータ) (2024-06-26T02:24:13Z) - Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis [4.3312979375047025]
本稿では、心電図(ECG)信号のためのマスク付きオートエンコーダ(MAE)に基づく教師なし事前トレーニング手法を提案する。
さらに、ECG分析のための完全なフレームワークを形成するためのタスク固有の微調整を提案する。
フレームワークは高レベルで普遍的で、特定のモデルアーキテクチャやタスクに個別に適応していない。
論文 参考訳(メタデータ) (2023-10-17T11:19:51Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Core-set Selection Using Metrics-based Explanations (CSUME) for
multiclass ECG [2.0520503083305073]
高品質なデータを選択することで、ディープラーニングモデルの性能が向上することを示す。
実験の結果,9.67%,8.69%の精度とリコール改善が得られた。
論文 参考訳(メタデータ) (2022-05-28T19:36:28Z) - Lead-agnostic Self-supervised Learning for Local and Global
Representations of Electrocardiogram [6.497259394685037]
本稿では,局所的およびグローバルな文脈表現を学習し,下流タスクの一般化性と性能を向上させるためのECG事前学習手法を提案する。
心臓不整脈分類と患者同定の2つの下流課題に対する実験結果から,提案手法が他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-03-14T07:10:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。