論文の概要: Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2406.02726v1
- Date: Tue, 4 Jun 2024 19:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:58:01.806609
- Title: Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting
- Title(参考訳): 交通予測のための時間グラフ学習リカレントニューラルネットワーク
- Authors: Sanghyun Lee, Chanyoung Park,
- Abstract要約: これらの問題に対処するため,TGLRN(Temporal Graph Learning Recurrent Neural Network)を提案する。
より正確には、時系列の性質を効果的にモデル化するために、リカレントニューラルネットワーク(RNN)を活用し、各ステップでグラフを動的に構築する。
実世界の4つのベンチマークデータセットの実験結果から, TGLRNの有効性が示された。
- 参考スコア(独自算出の注目度): 27.20703077756038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate traffic flow forecasting is a crucial research topic in transportation management. However, it is a challenging problem due to rapidly changing traffic conditions, high nonlinearity of traffic flow, and complex spatial and temporal correlations of road networks. Most existing studies either try to capture the spatial dependencies between roads using the same semantic graph over different time steps, or assume all sensors on the roads are equally likely to be connected regardless of the distance between them. However, we observe that the spatial dependencies between roads indeed change over time, and two distant roads are not likely to be helpful to each other when predicting the traffic flow, both of which limit the performance of existing studies. In this paper, we propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems. More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step, thereby capturing the time-evolving spatial dependencies between roads (i.e., microscopic view). Simultaneously, we provide the Adaptive Structure Information to the model, ensuring that close and consecutive sensors are considered to be more important for predicting the traffic flow (i.e., macroscopic view). Furthermore, to endow TGLRN with robustness, we introduce an edge sampling strategy when constructing the graph at each time step, which eventually leads to further improvements on the model performance. Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.
- Abstract(参考訳): 正確な交通流予測は交通管理において重要な研究課題である。
しかし, 交通条件の急激な変化, 交通流の非線形性, 道路網の複雑な空間的・時間的相関が問題となっている。
既存の研究の多くは、異なる時間ステップで同じ意味グラフを使って道路間の空間的依存関係を捉えようとするか、あるいは道路上のすべてのセンサーが、その距離に関係なく等しく接続される可能性が高いと仮定する。
しかし,道路間の空間的依存関係は時間とともに実際に変化し,交通流を予測する際には2つの離れた道路が互いに役に立たない傾向にあり,どちらも既存研究の性能を制限している。
本稿では,これらの問題に対処するため,TGLRN(Temporal Graph Learning Recurrent Neural Network)を提案する。
より正確には、時系列の性質を効果的にモデル化するために、リカレントニューラルネットワーク(RNN)を活用し、各ステップでグラフを動的に構築することで、道路間の時間進化する空間的依存関係(顕微鏡ビュー)をキャプチャする。
同時に、我々はモデルに適応構造情報を提供し、接近・連続するセンサが交通流(マクロビュー)を予測する上でより重要であるとみなす。
さらに,TGLRNに堅牢性を持たせるため,各ステップでグラフを構築する際にエッジサンプリング戦略を導入し,最終的にはモデル性能をさらに改善する。
実世界の4つのベンチマークデータセットの実験結果から, TGLRNの有効性が示された。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
このような相関関係は普遍的であり、交通流において重要な役割を担っていると我々は主張する。
交通センサの局所的時空間コンテキストを構築するための新しい時空間学習フレームワークを提案する。
提案したSTNNモデルは、目に見えない任意のトラフィックネットワークに適用できる。
論文 参考訳(メタデータ) (2021-09-11T09:04:35Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting [4.147625439377302]
A3T-GCN(A3T-GCN)トラヒック予測手法を提案した。
A3T-GCNモデルはゲートリカレントユニットを用いて時系列の短時間傾向を学習し,道路ネットワークのトポロジに基づいて空間依存性を学習する。
実世界のデータセットにおける実験結果は,提案したA3T-GCNの有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2020-06-20T14:12:01Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。