論文の概要: Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation
- arxiv url: http://arxiv.org/abs/2406.02733v1
- Date: Tue, 4 Jun 2024 19:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:58:01.800632
- Title: Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation
- Title(参考訳): ノイズロスト表現型音声音声音声合成のための自己監督蒸留によるテキストレス音響モデル
- Authors: Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee,
- Abstract要約: ノイズロスト表現型音声音声合成(S2ST)のための自己教師型蒸留方式を用いたテキストレス音響モデルを提案する。
提案手法は雑音非依存の表現を捉えるため,雑音環境においても有資格音声を生成することができる。
- 参考スコア(独自算出の注目度): 29.789809751108304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a textless acoustic model with a self-supervised distillation strategy for noise-robust expressive speech-to-speech translation (S2ST). Recently proposed expressive S2ST systems have achieved impressive expressivity preservation performances by cascading unit-to-speech (U2S) generator to the speech-to-unit translation model. However, these systems are vulnerable to the presence of noise in input speech, which is an assumption in real-world translation scenarios. To address this limitation, we propose a U2S generator that incorporates a distillation with no label (DINO) self-supervised training strategy into it's pretraining process. Because the proposed method captures noise-agnostic expressivity representation, it can generate qualified speech even in noisy environment. Objective and subjective evaluation results verified that the proposed method significantly improved the performance of the expressive S2ST system in noisy environments while maintaining competitive performance in clean environments.
- Abstract(参考訳): 本稿では,音声音声合成(S2ST)のための自己教師付き蒸留方式を用いたテキストレス音響モデルを提案する。
最近提案された表現型S2STシステムは,音声から単位への翻訳モデルにU2Sジェネレータをカスケードすることで,印象的な表現性維持性能を実現している。
しかし、これらのシステムは、実世界の翻訳シナリオにおける仮定である入力音声における雑音の存在に弱い。
この制限に対処するために,ラベルのない蒸留(DINO)を事前学習プロセスに組み込むU2Sジェネレータを提案する。
提案手法は雑音非依存の表現を捉えるため,雑音環境においても有資格音声を生成することができる。
目的, 主観評価の結果から, クリーン環境下での競合性能を維持しつつ, ノイズの多い環境下での表現型S2STシステムの性能を著しく向上することが確認された。
関連論文リスト
- Two-stage Framework for Robust Speech Emotion Recognition Using Target Speaker Extraction in Human Speech Noise Conditions [25.490988931354185]
本稿では、ターゲット話者抽出法(TSE)と音声感情認識法(SER)を用いて、この問題に対する新たな2段階フレームワークを提案する。
まず,TSEモデルを用いて混合話者の音声を抽出し,第2段階で抽出した音声をSER訓練に用いる。
提案システムでは,TSE法を使わずに,ベースラインに比べて14.33%の非重み付き精度(UA)向上を実現している。
論文 参考訳(メタデータ) (2024-09-29T07:04:50Z) - TRNet: Two-level Refinement Network leveraging Speech Enhancement for Noise Robust Speech Emotion Recognition [29.756961194844717]
提案したTRNetは,一致した雑音環境と一致しない雑音環境の両方において,提案方式の堅牢性を大幅に向上させる。
その結果,提案方式は,一致した環境と一致しない環境の両方において,提案方式のロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-19T16:09:17Z) - Noise-robust zero-shot text-to-speech synthesis conditioned on
self-supervised speech-representation model with adapters [47.75276947690528]
ゼロショットテキスト音声(TTS)法は,話者特性を極めて正確に再現することができる。
しかし、この手法は、参照音声が雑音を含む場合、音声合成品質の劣化に悩まされる。
本稿では,ノイズロストゼロショットTS法を提案する。
論文 参考訳(メタデータ) (2024-01-10T12:21:21Z) - On the Effectiveness of ASR Representations in Real-world Noisy Speech
Emotion Recognition [26.013815255299342]
音声の感情認識(NSER)を効果的に行う試みを提案する。
ノイズキャンバス特徴抽出器として自動音声認識(ASR)モデルを採用し,雑音の多い音声の非音声情報を除去する。
実験の結果,提案手法は従来のノイズ低減法に比べてNSER性能が向上し,2)自己教師あり学習手法よりも優れ,3)ASR文字起こしや音声音声の真理書き起こしによるテキストベースアプローチよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T05:45:55Z) - Continuous Modeling of the Denoising Process for Speech Enhancement
Based on Deep Learning [61.787485727134424]
状態変数をデノナイジングプロセスを示すために使用します。
UNetのようなニューラルネットワークは、連続的復調プロセスからサンプリングされたすべての状態変数を推定することを学ぶ。
実験結果から, クリーンターゲットに少量の雑音を保存することは, 音声強調に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-09-17T13:27:11Z) - Revisiting End-to-End Speech-to-Text Translation From Scratch [48.203394370942505]
E2E (End-to-end speech-to-text translation) はしばしば、音声認識やテキスト翻訳タスクを通じて、そのエンコーダおよび/またはデコーダをソース転写を用いて事前訓練することに依存する。
本稿では,音声翻訳対だけで訓練したE2E STの品質をどの程度改善できるかを考察する。
論文 参考訳(メタデータ) (2022-06-09T15:39:19Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
ディープ埋め込み特徴を用いた同時発声・発声同時学習法を提案する。
ノイズ発生段階では、DCネットワークを利用してノイズのないディープ埋込み特性を抽出する。
残響段階では、教師なしのK平均クラスタリングアルゴリズムの代わりに、別のニューラルネットワークを用いて無響音声を推定する。
論文 参考訳(メタデータ) (2020-04-06T06:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。