論文の概要: Language Models can Infer Action Semantics for Classical Planners from Environment Feedback
- arxiv url: http://arxiv.org/abs/2406.02791v1
- Date: Tue, 4 Jun 2024 21:29:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:37:23.704937
- Title: Language Models can Infer Action Semantics for Classical Planners from Environment Feedback
- Title(参考訳): 環境フィードバックから古典的プランナのアクションセマンティクスを推論できる言語モデル
- Authors: Wang Zhu, Ishika Singh, Robin Jia, Jesse Thomason,
- Abstract要約: 大規模言語モデル(LLM)は、常識的知識と最小限のドメイン情報に基づく計画手順を直接推論するために使用することができる。
提案するPSALMは,古典的プランナーが部分的ドメイン知識を付与した完全部分計画に推論を利用する。
7つの環境について分析した結果,LLMをプランナとして,ルール予測器として使用することにより,環境実行手順や環境リセットをランダムな探索よりも低くすることができることがわかった。
- 参考スコア(独自算出の注目度): 26.03718733867297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical planning approaches guarantee finding a set of actions that can achieve a given goal state when possible, but require an expert to specify logical action semantics that govern the dynamics of the environment. Researchers have shown that Large Language Models (LLMs) can be used to directly infer planning steps based on commonsense knowledge and minimal domain information alone, but such plans often fail on execution. We bring together the strengths of classical planning and LLM commonsense inference to perform domain induction, learning and validating action pre- and post-conditions based on closed-loop interactions with the environment itself. We propose PSALM, which leverages LLM inference to heuristically complete partial plans emitted by a classical planner given partial domain knowledge, as well as to infer the semantic rules of the domain in a logical language based on environment feedback after execution. Our analysis on 7 environments shows that with just one expert-curated example plans, using LLMs as heuristic planners and rule predictors achieves lower environment execution steps and environment resets than random exploration while simultaneously recovering the underlying ground truth action semantics of the domain.
- Abstract(参考訳): 古典的な計画手法は、与えられた目標状態を達成するための一連のアクションを見つけることを保証するが、専門家は環境のダイナミクスを管理する論理的なアクションセマンティクスを特定する必要がある。
研究者は、Large Language Models (LLMs) が、常識知識と最小限のドメイン情報に基づいて計画手順を直接推論するために使用できることを示したが、そのような計画は実行時に失敗することが多い。
我々は,従来の計画手法とLLMコモンセンス推論の強みを組み合わせて,環境自体とのクローズドループ相互作用に基づくドメイン誘導,学習,行動前条件と後条件の検証を行う。
提案するPSALMは,古典的プランナーが部分的ドメイン知識を与えられたときのヒューリスティックな完全部分計画にLLM推論を活用するとともに,実行後の環境フィードバックに基づいて論理言語でドメインの意味的ルールを推論する。
7つの環境を解析したところ, LLMをヒューリスティックプランナーとして, ルール予測器として使用することにより, ランダム探索よりも環境実行ステップや環境リセットを低減し, 基礎となる領域の真理行動セマンティクスを復元する。
関連論文リスト
- DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
既存のLLMエージェントシステムは、通常、各ステップで固定セットと事前定義されたセットからアクションを選択する。
動作の動的生成と構成をオンラインで実現するLLMエージェントフレームワークを提案する。
GAIAベンチマーク実験により, このフレームワークは柔軟性が向上し, 従来の手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2024-11-04T02:08:59Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - Translating Natural Language to Planning Goals with Large-Language
Models [19.738395237639136]
近年の大規模言語モデル(LLM)は,様々な自然言語処理(NLP)タスクにおいて顕著な性能を示した。
我々の中心的な問題は、LLMが自然言語で指定された目標を構造化された計画言語に翻訳できるかどうかである。
GPT 3.5 変種に対する実験結果から,LCM は計画よりも翻訳に適していることが示された。
論文 参考訳(メタデータ) (2023-02-10T09:17:52Z) - Generating Executable Action Plans with Environmentally-Aware Language
Models [4.162663632560141]
大量のテキストデータセットを使用してトレーニングされた大規模言語モデル(LLM)は、最近、ロボットエージェントのアクションプランを生成することを約束している。
本稿では,環境に配慮したアクションプラン作成手法を提案する。
論文 参考訳(メタデータ) (2022-10-10T18:56:57Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。
事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。
本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。