論文の概要: Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.02831v1
- Date: Wed, 5 Jun 2024 00:44:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:26:58.705590
- Title: Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection
- Title(参考訳): 弱教師付きビデオ異常検出のための蒸留集約知識
- Authors: Jash Dalvi, Ali Dabouei, Gunjan Dhanuka, Min Xu,
- Abstract要約: ビデオ異常検出は、監視ビデオにおける異常事象を識別できる自動モデルを開発することを目的としている。
集約表現から比較的単純なモデルに知識を蒸留することで,最先端の性能が得られることを示す。
- 参考スコア(独自算出の注目度): 11.250490586786878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection aims to develop automated models capable of identifying abnormal events in surveillance videos. The benchmark setup for this task is extremely challenging due to: i) the limited size of the training sets, ii) weak supervision provided in terms of video-level labels, and iii) intrinsic class imbalance induced by the scarcity of abnormal events. In this work, we show that distilling knowledge from aggregated representations of multiple backbones into a relatively simple model achieves state-of-the-art performance. In particular, we develop a bi-level distillation approach along with a novel disentangled cross-attention-based feature aggregation network. Our proposed approach, DAKD (Distilling Aggregated Knowledge with Disentangled Attention), demonstrates superior performance compared to existing methods across multiple benchmark datasets. Notably, we achieve significant improvements of 1.36%, 0.78%, and 7.02% on the UCF-Crime, ShanghaiTech, and XD-Violence datasets, respectively.
- Abstract(参考訳): ビデオ異常検出は、監視ビデオにおける異常事象を識別できる自動モデルを開発することを目的としている。
このタスクのベンチマーク設定は非常に難しい。
一 訓練セットの限られた大きさ
二 ビデオレベルラベルで定める監督の弱さ
三 異常事象の欠如により生ずる内因性階級不均衡
本研究では,複数のバックボーンの集合的表現から比較的単純なモデルに知識を蒸留することで,最先端の性能が得られることを示す。
特に,二段階蒸留法と新規な非絡み合い型特徴集約ネットワークを開発した。
提案手法であるDAKD(Distilling Aggregated Knowledge with Disentangled Attention)は,複数のベンチマークデータセットにまたがる既存手法と比較して,優れた性能を示す。
特に、UCF-Crime、ShanghaiTech、XD-Violenceデータセットでそれぞれ1.36%、0.78%、および7.02%の大幅な改善を実現しています。
関連論文リスト
- MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
本稿では,新しい階層グラフニューラルネットワーク(GNN)モデルであるMissionGNNを紹介する。
提案手法は,大規模マルチモーダルモデル上での重勾配計算を回避し,従来の手法の限界を回避する。
我々のモデルは,従来のセグメンテーションベースやマルチモーダルアプローチの制約を伴わずに,リアルタイムビデオ解析のための実用的で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-27T01:09:07Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - Learning to Adapt to Unseen Abnormal Activities under Weak Supervision [43.40900198498228]
ビデオ中の弱教師付き異常検出のためのメタラーニングフレームワークを提案する。
このフレームワークは,バイナリラベルの動画レベルのアノテーションが利用可能である場合にのみ,目に見えないような異常なアクティビティに効果的に対応できることを学習する。
論文 参考訳(メタデータ) (2022-03-25T12:15:44Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
バッグレベルの関係抽出(RE)における注意と知識グラフの効果を定量的に評価する。
その結果,(1)注目精度の向上は,エンティティ参照特徴を抽出するモデルの性能を損なう可能性があること,(2)注目性能は様々なノイズ分布パターンの影響が大きいこと,(3)KG強化された注目はRE性能を向上するが,その効果は注目度を向上させるだけでなく,先行するエンティティを組み込むことによっても改善することがわかった。
論文 参考訳(メタデータ) (2021-07-26T09:38:28Z) - MIST: Multiple Instance Self-Training Framework for Video Anomaly
Detection [76.80153360498797]
タスク固有の識別表現を効率的に洗練するためのマルチインスタンス自己学習フレームワーク(MIST)を開発した。
mistは1)スパース連続サンプリング戦略を適用し,より信頼性の高いクリップレベル擬似ラベルを生成するマルチインスタンス擬似ラベル生成器,2)自己誘導型注意強調特徴エンコーダで構成される。
本手法は,上海技術におけるフレームレベルのAUC 94.83%の取得において,既存の教師付きおよび弱教師付き手法と同等あるいはそれ以上に機能する。
論文 参考訳(メタデータ) (2021-04-04T15:47:14Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
本稿では,多様体の寄与を考慮した弱教師付き異常検出手法を提案する。
提案手法は, UCF Crime と ShanghaiTech のデータセットでそれぞれ 83.03% と 89.67% のフレームレベルの AUC 性能を得る。
論文 参考訳(メタデータ) (2020-11-24T13:27:40Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
ビデオにおける異常検出は、コンピュータビジョンの問題である。
本稿では,オブジェクトレベルでの自己教師型およびマルチタスク学習を通じて,ビデオ中の異常事象検出にアプローチする。
論文 参考訳(メタデータ) (2020-11-15T10:21:28Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。