論文の概要: Oscillations enhance time-series prediction in reservoir computing with feedback
- arxiv url: http://arxiv.org/abs/2406.02867v1
- Date: Wed, 5 Jun 2024 02:30:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:16:58.872142
- Title: Oscillations enhance time-series prediction in reservoir computing with feedback
- Title(参考訳): 振動はフィードバックによる貯水池計算における時系列予測を促進する
- Authors: Yuji Kawai, Takashi Morita, Jihoon Park, Minoru Asada,
- Abstract要約: 貯留層コンピューティング(Reservoir computing)は、脳のモデリングに使用される機械学習フレームワークである。
貯水池系が不安定になるため、長期目標時系列を正確に再現することは困難である。
本研究では,振動駆動型貯水池計算 (ODRC) をフィードバックで提案する。
- 参考スコア(独自算出の注目度): 3.3686252536891454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir computing, a machine learning framework used for modeling the brain, can predict temporal data with little observations and minimal computational resources. However, it is difficult to accurately reproduce the long-term target time series because the reservoir system becomes unstable. This predictive capability is required for a wide variety of time-series processing, including predictions of motor timing and chaotic dynamical systems. This study proposes oscillation-driven reservoir computing (ODRC) with feedback, where oscillatory signals are fed into a reservoir network to stabilize the network activity and induce complex reservoir dynamics. The ODRC can reproduce long-term target time series more accurately than conventional reservoir computing methods in a motor timing and chaotic time-series prediction tasks. Furthermore, it generates a time series similar to the target in the unexperienced period, that is, it can learn the abstract generative rules from limited observations. Given these significant improvements made by the simple and computationally inexpensive implementation, the ODRC would serve as a practical model of various time series data. Moreover, we will discuss biological implications of the ODRC, considering it as a model of neural oscillations and their cerebellar processors.
- Abstract(参考訳): 脳のモデリングに使用される機械学習フレームワークであるReservoir Computingは、観測の少ない時間データを最小限の計算リソースで予測することができる。
しかし, 貯水池系が不安定になるため, 長期目標時系列を正確に再現することは困難である。
この予測能力は、モータタイミングの予測やカオス力学系の予測など、様々な時系列処理に必要である。
本研究は, 振動駆動型貯水池計算(ODRC)のフィードバックにより, 振動信号を貯水池ネットワークに供給し, ネットワーク活動を安定化し, 複雑な貯水池力学を誘導する手法を提案する。
ODRCは、モータタイミングおよびカオス時系列予測タスクにおいて、従来の貯水池計算方法よりも、より正確な長期目標時系列を再現することができる。
さらに、未経験期間における対象と類似した時系列を生成する。つまり、限られた観測から抽象的な生成規則を学習することができる。
このような単純で計算コストのかかる実装による大幅な改善を考えると、ODRCは様々な時系列データの実用的なモデルとして機能する。
さらに、神経振動とその小脳プロセッサのモデルとして、ODRCの生物学的意義について論じる。
関連論文リスト
- A novel Reservoir Architecture for Periodic Time Series Prediction [4.7368661961661775]
本稿では,貯水池計算を用いた周期時系列の予測手法を提案する。
このモデルは、リズムの正確な予測を提供するように調整されている。
我々のネットワークは、人間の周波数知覚範囲内のリズム信号を正確に予測する。
論文 参考訳(メタデータ) (2024-05-16T13:55:53Z) - Chaotic attractor reconstruction using small reservoirs - the influence
of topology [0.0]
貯留層計算はカオス力学の予測に有効な方法であることが示されている。
本研究では,未結合ノードの貯留層が長期時間予測をより確実に生成することを示す。
論文 参考訳(メタデータ) (2024-02-23T09:43:52Z) - Reduced-order modeling of unsteady fluid flow using neural network
ensembles [0.0]
本稿では,一般的なアンサンブル学習手法であるバッグングを用いて,完全なデータ駆動型リダクションモデルフレームワークを開発することを提案する。
このフレームワークはCAEを用いて全階モデルとLSTMアンサンブルの空間的再構成を行い、時系列予測を行う。
その結果,提案フレームワークはエラーの伝播を効果的に低減し,未確認点における潜伏変数の時系列予測をより正確に行うことができることがわかった。
論文 参考訳(メタデータ) (2024-02-08T03:02:59Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation
for Time Series [49.992908221544624]
時系列データは、しばしば多くの欠落した値を示し、これは時系列計算タスクである。
従来の深層学習法は時系列計算に有効であることが示されている。
本研究では,不確実性のある高精度な計算を行う非生成時系列計算法を提案する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
重み付き時間遅延フィードバック機構を備えた新しいゲートリカレントユニット(GRU)を導入する。
我々は、$tau$-GRUが、最先端のリカレントユニットやゲート型リカレントアーキテクチャよりも早く収束し、より一般化できることを示します。
論文 参考訳(メタデータ) (2022-12-01T02:26:34Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - A Systematic Exploration of Reservoir Computing for Forecasting Complex
Spatiotemporal Dynamics [0.0]
Reservoir Computer (RC) は、本質的にカオス力学系の予測アーキテクチャに成功しているリカレントニューラルネットワークの一種である。
多数の特性力学系に対する「クラス最良」RCのアーキテクチャと設計選択について検討する。
ローカライゼーションを用いた大規模モデルへのスケールアップにおけるこれらの選択の適用について述べる。
論文 参考訳(メタデータ) (2022-01-21T22:31:12Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
風車農場で生成されたデータの量は、オンライン学習が従うべき最も有効な戦略となっている。
我々はLong Short-term Cognitive Networks (LSTCNs) を用いて、オンライン環境での風車時系列を予測する。
提案手法は,単純なRNN,長期記憶,Gated Recurrent Unit,Hidden Markov Modelに対して最も低い予測誤差を報告した。
論文 参考訳(メタデータ) (2021-07-01T13:13:24Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Model-Size Reduction for Reservoir Computing by Concatenating Internal
States Through Time [2.6872737601772956]
Reservoir Computing(RC)は、データから複雑な時系列を非常に高速に学習できる機械学習アルゴリズムである。
エッジコンピューティングにRCを実装するためには,RCに必要な計算資源の削減が重要である。
本研究では, 貯水池の過去又は漂流状態を現時点の出力層に投入することにより, 貯水池の規模を小さくする手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T06:11:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。