論文の概要: Nonlinear Transformations Against Unlearnable Datasets
- arxiv url: http://arxiv.org/abs/2406.02883v1
- Date: Wed, 5 Jun 2024 03:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:16:58.819005
- Title: Nonlinear Transformations Against Unlearnable Datasets
- Title(参考訳): 再生不能データセットに対する非線形変換
- Authors: Thushari Hapuarachchi, Jing Lin, Kaiqi Xiong, Mohamed Rahouti, Gitte Ost,
- Abstract要約: 自動スクラップは、データ所有者の許可なしにディープラーニングモデルのデータを収集する一般的な方法として際立っている。
近年,このデータ収集手法に関するプライバシー問題に取り組み始めている。
学習不可能(unlearnable)な例と呼ばれるこれらのアプローチによって生成されたデータは、ディープラーニングモデルによって"学習"される。
- 参考スコア(独自算出の注目度): 4.876873339297269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated scraping stands out as a common method for collecting data in deep learning models without the authorization of data owners. Recent studies have begun to tackle the privacy concerns associated with this data collection method. Notable approaches include Deepconfuse, error-minimizing, error-maximizing (also known as adversarial poisoning), Neural Tangent Generalization Attack, synthetic, autoregressive, One-Pixel Shortcut, Self-Ensemble Protection, Entangled Features, Robust Error-Minimizing, Hypocritical, and TensorClog. The data generated by those approaches, called "unlearnable" examples, are prevented "learning" by deep learning models. In this research, we investigate and devise an effective nonlinear transformation framework and conduct extensive experiments to demonstrate that a deep neural network can effectively learn from the data/examples traditionally considered unlearnable produced by the above twelve approaches. The resulting approach improves the ability to break unlearnable data compared to the linear separable technique recently proposed by researchers. Specifically, our extensive experiments show that the improvement ranges from 0.34% to 249.59% for the unlearnable CIFAR10 datasets generated by those twelve data protection approaches, except for One-Pixel Shortcut. Moreover, the proposed framework achieves over 100% improvement of test accuracy for Autoregressive and REM approaches compared to the linear separable technique. Our findings suggest that these approaches are inadequate in preventing unauthorized uses of data in machine learning models. There is an urgent need to develop more robust protection mechanisms that effectively thwart an attacker from accessing data without proper authorization from the owners.
- Abstract(参考訳): 自動スクラップは、データ所有者の許可なしにディープラーニングモデルのデータを収集する一般的な方法として際立っている。
近年,このデータ収集手法に関するプライバシー問題に取り組み始めている。
注目すべきアプローチとしては、Deepconfuse、エラー最小化、エラー最大化(逆行性中毒とも呼ばれる)、Neural Tangent Generalization Attack、Synthetic、autoregressive、One-Pixel Shortcut、Self-Ensemble Protection、Entangled Features、Robust Error-Minimizing、Physe critical、TensorClogなどがある。
学習不可能(unlearnable)な例と呼ばれるこれらのアプローチによって生成されたデータは、ディープラーニングモデルによって"学習"される。
本研究では,従来の学習不可能と考えられてきたデータ/サンプルから,ニューラルネットワークが効果的に学習できることを実証するために,有効な非線形変換フレームワークを研究開発し,広範な実験を行う。
結果として得られたアプローチは、最近研究者によって提案された線形分離可能な手法と比較して、学習不可能なデータを分解する能力を改善する。
具体的には、この改良は、1-Pixelショートカットを除いて、これらの12つのデータ保護アプローチによって生成される未学習のCIFAR10データセットに対して0.34%から249.59%の範囲に及んでいることを示す。
さらに, 自動回帰法とREM法の試験精度を線形分離法と比較して100%以上向上させる手法を提案する。
その結果,これらの手法は,機械学習モデルにおける不正なデータの使用を防止するには不十分であることが示唆された。
攻撃者が所有者の適切な許可なしにデータにアクセスするのを効果的に阻止する、より堅牢な保護メカニズムを開発する必要がある。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
敵対的ミススティングネス(AM)攻撃は、悪意ある無知の欠陥メカニズムによって動機づけられる。
本研究は,AM攻撃の文脈における連帯学習に焦点を当てる。
両レベルの最適化として,対向的欠落メカニズムの学習を定式化する。
論文 参考訳(メタデータ) (2024-09-06T17:10:28Z) - Efficient Availability Attacks against Supervised and Contrastive
Learning Simultaneously [26.018467038778006]
本稿では、SLとCLの両方に有効な攻撃を得るために、教師付きエラー最小化やフレームワークにおける対照的なデータ拡張を提案する。
提案したAUE攻撃とAAP攻撃は,SLアルゴリズムとCLアルゴリズムにまたがる最先端の非学習性を実現し,消費電力を低減し,現実の応用の可能性を示す。
論文 参考訳(メタデータ) (2024-02-06T14:05:05Z) - What Can We Learn from Unlearnable Datasets? [107.12337511216228]
学習不可能なデータセットは、ディープニューラルネットワークの一般化を防ぐことによって、データのプライバシを保護する可能性がある。
学習不可能なデータセットでトレーニングされたニューラルネットワークは、一般化には役に立たない単純なルールであるショートカットのみを学ぶと広く信じられている。
これとは対照的に,ネットワークは高いテスト性能を期待できる有用な特徴を実際に学習することができ,画像保護が保証されていないことを示唆している。
論文 参考訳(メタデータ) (2023-05-30T17:41:35Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
オープンセット半教師付き学習(Open-set SSL)は、ラベル付きデータ(inliers)で観測されない新しいカテゴリ(outliers)を含むラベル付きデータとテストデータを含む、より実践的なシナリオである。
本研究では,様々な不確かさを定量化するための外乱検出器として顕在的深層学習(EDL)を導入し,自己学習と推論のための異なる不確実性指標を設計する。
Inlierとoutlierの両方を含むラベルなしデータセットに適合するように、新しい適応的負の最適化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-21T09:07:15Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks [28.502489028888608]
Unlearnable Example (ULE) は、DNNのトレーニングのための不正使用からデータを保護することを目的としている。
逆行訓練では、誤り最小化ノイズの非学習性は著しく低下する。
本稿では,各画像の1ピクセルのみを摂動させ,データセットを学習不能にする,新しいモデルフリー手法であるemphOne-Pixel Shortcutを提案する。
論文 参考訳(メタデータ) (2022-05-24T15:17:52Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
ディープラーニングアルゴリズムは最近、脆弱性のために攻撃者がターゲットとしている。
非連続的深層モデルは、いまだに敵対的な攻撃に対して頑健ではない。
本稿では,特徴を特定のマージン下に置くことによって予測を容易にする新しい目的/損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-08T20:51:43Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。