Nonlinear Transformations Against Unlearnable Datasets
- URL: http://arxiv.org/abs/2406.02883v1
- Date: Wed, 5 Jun 2024 03:00:47 GMT
- Title: Nonlinear Transformations Against Unlearnable Datasets
- Authors: Thushari Hapuarachchi, Jing Lin, Kaiqi Xiong, Mohamed Rahouti, Gitte Ost,
- Abstract summary: Automated scraping stands out as a common method for collecting data in deep learning models without the authorization of data owners.
Recent studies have begun to tackle the privacy concerns associated with this data collection method.
The data generated by those approaches, called "unlearnable" examples, are prevented "learning" by deep learning models.
- Score: 4.876873339297269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated scraping stands out as a common method for collecting data in deep learning models without the authorization of data owners. Recent studies have begun to tackle the privacy concerns associated with this data collection method. Notable approaches include Deepconfuse, error-minimizing, error-maximizing (also known as adversarial poisoning), Neural Tangent Generalization Attack, synthetic, autoregressive, One-Pixel Shortcut, Self-Ensemble Protection, Entangled Features, Robust Error-Minimizing, Hypocritical, and TensorClog. The data generated by those approaches, called "unlearnable" examples, are prevented "learning" by deep learning models. In this research, we investigate and devise an effective nonlinear transformation framework and conduct extensive experiments to demonstrate that a deep neural network can effectively learn from the data/examples traditionally considered unlearnable produced by the above twelve approaches. The resulting approach improves the ability to break unlearnable data compared to the linear separable technique recently proposed by researchers. Specifically, our extensive experiments show that the improvement ranges from 0.34% to 249.59% for the unlearnable CIFAR10 datasets generated by those twelve data protection approaches, except for One-Pixel Shortcut. Moreover, the proposed framework achieves over 100% improvement of test accuracy for Autoregressive and REM approaches compared to the linear separable technique. Our findings suggest that these approaches are inadequate in preventing unauthorized uses of data in machine learning models. There is an urgent need to develop more robust protection mechanisms that effectively thwart an attacker from accessing data without proper authorization from the owners.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
Adversarial Missingness (AM) attacks are motivated by maliciously engineering non-ignorable missingness mechanisms.
In this work we focus on associational learning in the context of AM attacks.
We formulate the learning of the adversarial missingness mechanism as a bi-level optimization.
arXiv Detail & Related papers (2024-09-06T17:10:28Z) - Efficient Availability Attacks against Supervised and Contrastive
Learning Simultaneously [26.018467038778006]
We propose contrastive-like data augmentations in supervised error minimization or frameworks to obtain attacks effective for both SL and CL.
Our proposed AUE and AAP attacks achieve state-of-the-art worst-case unlearnability across SL and CL algorithms with less consumption, showcasing prospects in real-world applications.
arXiv Detail & Related papers (2024-02-06T14:05:05Z) - What Can We Learn from Unlearnable Datasets? [107.12337511216228]
Unlearnable datasets have the potential to protect data privacy by preventing deep neural networks from generalizing.
It is widely believed that neural networks trained on unlearnable datasets only learn shortcuts, simpler rules that are not useful for generalization.
In contrast, we find that networks actually can learn useful features that can be reweighed for high test performance, suggesting that image protection is not assured.
arXiv Detail & Related papers (2023-05-30T17:41:35Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks [28.502489028888608]
Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs.
In adversarial training, the unlearnability of error-minimizing noise will severely degrade.
We propose a novel model-free method, named emphOne-Pixel Shortcut, which only perturbs a single pixel of each image and makes the dataset unlearnable.
arXiv Detail & Related papers (2022-05-24T15:17:52Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
arXiv Detail & Related papers (2020-12-08T20:51:43Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.