論文の概要: Open Grounded Planning: Challenges and Benchmark Construction
- arxiv url: http://arxiv.org/abs/2406.02903v1
- Date: Wed, 5 Jun 2024 03:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:05:49.129564
- Title: Open Grounded Planning: Challenges and Benchmark Construction
- Title(参考訳): オープングランドプランニング - 課題とベンチマーク構築
- Authors: Shiguang Guo, Ziliang Deng, Hongyu Lin, Yaojie Lu, Xianpei Han, Le Sun,
- Abstract要約: 我々は,新たな計画課題--オープン・グランド・プランニングを提案する。
オープングランドプランニングの主な目的は、可変アクションセットに基づいて実行可能なプランを生成するようモデルに求めることである。
そして、現在最先端のLLMを5つの計画手法とともにテストし、既存のLLMとメソッドが、オープンドメインの基盤となる計画によってもたらされる課題を解決するのに依然として苦労していることを明らかにした。
- 参考スコア(独自算出の注目度): 44.86307213996181
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The emergence of large language models (LLMs) has increasingly drawn attention to the use of LLMs for human-like planning. Existing work on LLM-based planning either focuses on leveraging the inherent language generation capabilities of LLMs to produce free-style plans, or employs reinforcement learning approaches to learn decision-making for a limited set of actions within restricted environments. However, both approaches exhibit significant discrepancies from the open and executable requirements in real-world planning. In this paper, we propose a new planning task--open grounded planning. The primary objective of open grounded planning is to ask the model to generate an executable plan based on a variable action set, thereby ensuring the executability of the produced plan. To this end, we establishes a benchmark for open grounded planning spanning a wide range of domains. Then we test current state-of-the-art LLMs along with five planning approaches, revealing that existing LLMs and methods still struggle to address the challenges posed by grounded planning in open domains. The outcomes of this paper define and establish a foundational dataset for open grounded planning, and shed light on the potential challenges and future directions of LLM-based planning.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、人間のような計画にLLMを使うことに注目が集まっている。
LLMベースの計画に関する既存の研究は、LLMの言語生成能力を活用してフリースタイルの計画を作成するか、あるいは制限された環境内での限られた行動に対する意思決定を学習するために強化学習アプローチを採用するかに焦点を当てている。
しかし、どちらの手法も、実世界の計画において、オープンかつ実行可能な要件とはかなりの相違が見られる。
本稿では,新しい計画課題であるオープングランドプランニングを提案する。
オープングランドプランニングの主な目的は、モデルに可変アクションセットに基づいて実行可能なプランを生成するように要求することであり、それによって生成されたプランの実行可能性を確保することである。
この目的のために、幅広い領域にまたがるオープングランドプランニングのベンチマークを確立する。
そして、現在最先端のLLMを5つの計画手法とともにテストし、既存のLLMとメソッドが、オープンドメインの基盤となる計画によってもたらされる課題を解決するのに依然として苦労していることを明らかにした。
本研究の結果は,オープングラウンドプランニングの基盤となるデータセットを定義し,LLMプランニングの潜在的な課題と今後の方向性を明らかにした。
関連論文リスト
- Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
本稿では,言語誘導型シンボリックタスク計画(LM-SymOpt)フレームワークの最適化を提案する。
大規模言語モデルからの世界的知識と公式な推論を組み合わせた最初のエキスパートフリーな計画フレームワークです。
実験の結果,LM-SymOpt は既存の LLM ベースの計画手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-25T13:33:22Z) - LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning [7.36760703426119]
この調査は、言語モデルで計画する際の既存の課題を強調することを目的としている。
実施環境、最適なスケジューリング、競争と協力のゲーム、タスクの分解、推論、計画といった重要な分野に焦点を当てている。
論文 参考訳(メタデータ) (2024-09-03T11:39:52Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - On the Roles of LLMs in Planning: Embedding LLMs into Planning Graphs [12.326862964753694]
市販の計画フレームワークにおける大規模言語モデル(LLM)の計画能力について考察する。
LLMを2段階の計画グラフに組み込んだ新しいLLMベースの計画フレームワークを提案する。
様々な計画領域において提案手法の有効性を実証的に示す。
論文 参考訳(メタデータ) (2024-02-18T15:53:32Z) - What's the Plan? Evaluating and Developing Planning-Aware Techniques for Language Models [7.216683826556268]
大きな言語モデル(LLM)は、計画機能を必要とするアプリケーションにますます使われています。
我々は,新しいハイブリッド・メソドであるSimPlanを紹介し,その性能を新たな挑戦的な設定で評価する。
論文 参考訳(メタデータ) (2024-02-18T07:42:49Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。
各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
論文 参考訳(メタデータ) (2024-02-05T04:25:24Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
従来のルールベースプランナとLCMベースのプランナを併用した,新しいハイブリッドプランナを開発した。
当社のアプローチでは,既存のプランナが苦労する複雑なシナリオをナビゲートし,合理的なアウトプットを生成すると同時に,ルールベースのアプローチと連携して作業する。
論文 参考訳(メタデータ) (2023-12-30T02:53:45Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。