論文の概要: Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity
- arxiv url: http://arxiv.org/abs/2406.02913v1
- Date: Wed, 5 Jun 2024 04:07:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:05:49.120284
- Title: Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity
- Title(参考訳): 極端間隔を有するLDMのゼロ次微調整
- Authors: Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, Zhaozhuo Xu,
- Abstract要約: ゼロ階最適化(ZO)は、微調整された大規模言語モデルのためのメモリ効率の高い戦略である。
本研究では,ZO を用いた LLM パラメータの極小サブセットの微調整の実現可能性について検討した。
この結果から,ZO を用いた LLM の微調整パラメータ 0.1% は,ZO の微調整性能より優れることが示された。
- 参考スコア(独自算出の注目度): 66.67596152389591
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large Language Models using only forward passes. However, the application of ZO fine-tuning in memory-constrained settings such as mobile phones and laptops is still challenging since full precision forward passes are infeasible. In this study, we address this limitation by integrating sparsity and quantization into ZO fine-tuning of LLMs. Specifically, we investigate the feasibility of fine-tuning an extremely small subset of LLM parameters using ZO. This approach allows the majority of un-tuned parameters to be quantized to accommodate the constraint of limited device memory. Our findings reveal that the pre-training process can identify a set of "sensitive parameters" that can guide the ZO fine-tuning of LLMs on downstream tasks. Our results demonstrate that fine-tuning 0.1% sensitive parameters in the LLM with ZO can outperform the full ZO fine-tuning performance, while offering wall-clock time speedup. Additionally, we show that ZO fine-tuning targeting these 0.1% sensitive parameters, combined with 4 bit quantization, enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device with less than 8 GiB of memory and notably reduced latency.
- Abstract(参考訳): ゼロ階最適化(ゼロ階最適化、ZO)は、フォワードパスのみを用いた大規模言語モデルの微調整のためのメモリ効率の最適化手法である。
しかし、携帯電話やラップトップなどのメモリ制限された設定におけるZO微調整の適用は、完全精度のフォワードパスが実現不可能であるため、依然として困難である。
本研究では,LLMのZO微調整に空間性と量子化を組み込むことにより,この制限に対処する。
具体的には,ZO を用いた LLM パラメータの極めて小さなサブセットの微調整の実現可能性について検討する。
このアプローチにより、未チューニングパラメータの大部分を量子化し、限られたデバイスメモリの制約を満たすことができる。
以上の結果から, 学習前プロセスは, 下流タスクにおけるZO微調整を導出する「感度パラメータ」のセットを特定できることがわかった。
以上の結果から,ZO を用いた LLM の微調整パラメータは,壁面時間速度を向上しつつ,ZO の微調整性能に優れることが示された。
さらに、これらの0.1%の感度パラメータをターゲットとしたZO微調整と4ビット量子化を組み合わせ、メモリ8ギバイト未満のGPUデバイス上でのLlama2-7Bモデルの効率的なZO微調整を可能にし、遅延を顕著に低減できることを示す。
関連論文リスト
- Simultaneous Computation and Memory Efficient Zeroth-Order Optimizer for Fine-Tuning Large Language Models [33.911521719528686]
微調整は、大きな言語モデルを下流タスクに適応させるには強力だが、多くの場合、大きなメモリ使用量をもたらす。
有望なアプローチはゼロ階勾配 (ZO) を使うことであり、これは第一階勾配 (FO) を置き換えると見積もられている。
本稿では,レイヤワイドスパース計算とメモリ効率の高いZO,LeZOを提案する。
論文 参考訳(メタデータ) (2024-10-13T12:47:37Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM
Fine-Tuning [67.44661423463927]
本稿では,ZOをパラメータの慎重に選択したサブセットにのみ適用するメモリ効率のゼロ階最適化手法であるSparse MeZOを紹介する。
その結果,Sparse-MeZO はオーバーヘッドを伴わずに,MeZO 上での性能と収束速度を安定的に向上することを示した。
論文 参考訳(メタデータ) (2024-02-24T07:22:04Z) - HiFT: A Hierarchical Full Parameter Fine-Tuning Strategy [55.17502828915191]
本稿では,各学習段階におけるパラメータのサブセットのみを更新する,新しい非独立なエンドツーエンドの階層的微調整戦略であるHiFTを提案する。
この結果から,HiFTはパラメータ効率の高いファインチューニングと標準のフルパラメータファインチューニングに匹敵する性能を達成できることが示された。
論文 参考訳(メタデータ) (2024-01-26T21:14:32Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - QFT: Quantized Full-parameter Tuning of LLMs with Affordable Resources [37.265708531464746]
大規模言語モデル(LLM)は、さまざまな自然言語処理タスクに顕著な影響を与えている。
これらのトレーニング済みモデルを下流データセットに微調整することで、さらなる大幅なパフォーマンス向上が達成されるが、このプロセスは異常なリソース要求のために困難だった。
性能を損なうことなくメモリ効率のよい微調整を可能にするLLMのための新しい量子フルパラメータチューニングフレームワークQFTを提案する。
論文 参考訳(メタデータ) (2023-10-11T02:47:40Z) - SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight
Compression [76.73007709690306]
Sparse-Quantized Representation (SpQR) は,新しい圧縮フォーマットと量子化技術である。
SpQRは、高精度なLLaMAとFalcon LLMのパープレキシティにおいて、1%未満の相対的精度の損失を達成している。
これにより、1台の24GBのコンシューマGPU上で33BパラメータのLSMを実行でき、15%のスピードアップでパフォーマンスの劣化は発生しない。
論文 参考訳(メタデータ) (2023-06-05T17:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。