論文の概要: P2PFormer: A Primitive-to-polygon Method for Regular Building Contour Extraction from Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2406.02930v1
- Date: Wed, 5 Jun 2024 04:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 19:59:32.891739
- Title: P2PFormer: A Primitive-to-polygon Method for Regular Building Contour Extraction from Remote Sensing Images
- Title(参考訳): P2PFormer:リモートセンシング画像から正規建物輪郭抽出のためのプリミティブ・ツー・ポリゴン法
- Authors: Tao Zhang, Shiqing Wei, Yikang Zhou, Muying Luo, Wenling You, Shunping Ji,
- Abstract要約: 既存の方法は不規則な輪郭、丸い角、冗長点に悩まされている。
本稿では,ポストプロセッシングを使わずに通常の建物輪郭を生成する,新しい合理化パイプラインを提案する。
P2PFormerは、WHU、CrowdAI、WHU-Mixデータセット上で、最先端のパフォーマンスを新たに実現している。
- 参考スコア(独自算出の注目度): 5.589842901102337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting building contours from remote sensing imagery is a significant challenge due to buildings' complex and diverse shapes, occlusions, and noise. Existing methods often struggle with irregular contours, rounded corners, and redundancy points, necessitating extensive post-processing to produce regular polygonal building contours. To address these challenges, we introduce a novel, streamlined pipeline that generates regular building contours without post-processing. Our approach begins with the segmentation of generic geometric primitives (which can include vertices, lines, and corners), followed by the prediction of their sequence. This allows for the direct construction of regular building contours by sequentially connecting the segmented primitives. Building on this pipeline, we developed P2PFormer, which utilizes a transformer-based architecture to segment geometric primitives and predict their order. To enhance the segmentation of primitives, we introduce a unique representation called group queries. This representation comprises a set of queries and a singular query position, which improve the focus on multiple midpoints of primitives and their efficient linkage. Furthermore, we propose an innovative implicit update strategy for the query position embedding aimed at sharpening the focus of queries on the correct positions and, consequently, enhancing the quality of primitive segmentation. Our experiments demonstrate that P2PFormer achieves new state-of-the-art performance on the WHU, CrowdAI, and WHU-Mix datasets, surpassing the previous SOTA PolyWorld by a margin of 2.7 AP and 6.5 AP75 on the largest CrowdAI dataset. We intend to make the code and trained weights publicly available to promote their use and facilitate further research.
- Abstract(参考訳): リモートセンシング画像から建物輪郭を抽出することは、複雑で多様な形状、閉塞、騒音のために重要な課題である。
既存の方法は、しばしば不規則な輪郭、丸い角、冗長点に悩まされ、通常の多角形建築輪郭を生成するために広範囲な後処理を必要とする。
これらの課題に対処するため,我々は,ポストプロセッシングを伴わずに通常の建物輪郭を生成する,新しい合理化パイプラインを導入する。
我々のアプローチは、一般的な幾何学的プリミティブ(頂点、線、角を含むことができる)のセグメンテーションから始まり、次にそれらの列の予測を行う。
これにより、セグメント化されたプリミティブを順次接続することで、通常の建物の輪郭を直接構築することができる。
このパイプライン上に構築したP2PFormerは,変圧器をベースとしたアーキテクチャを用いて幾何学的プリミティブを分割し,その順序を予測する。
プリミティブのセグメンテーションを強化するために,グループクエリと呼ばれるユニークな表現を導入する。
この表現は、一連のクエリと特異なクエリ位置から構成され、プリミティブの複数のミドルポイントとその効率的なリンクに焦点を当てる。
さらに,クエリ位置の埋め込みにおいて,クエリの焦点を適切な位置に絞ることを目的とした革新的な暗黙的な更新戦略を提案し,その結果,プリミティブセグメンテーションの質を高める。
我々の実験は、P2PFormerがWHU、CrowdAI、WHU-Mixデータセットで新しい最先端のパフォーマンスを実現し、最大のCrowdAIデータセットでは2.7 APと6.5 AP75のマージンで以前のSOTA PolyWorldを上回ったことを示している。
コードとトレーニングされた重量を公開して、それらの使用を促進し、さらなる研究を促進するつもりです。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - RoIPoly: Vectorized Building Outline Extraction Using Vertex and Logit Embeddings [5.093758132026397]
航空画像や衛星画像から建物概要を抽出する新しいクエリベースの手法を提案する。
クエリとして各ポリゴンを定式化し、潜在的ビルディングの最も関連性の高い領域に対してクエリの注意を拘束する。
本手法は,2次元フロアプラン再構築データセットであるStructured3Dを用いて,ベクトル化建物アウトライン抽出データセット(CrowdAI)と2次元フロアプラン再構築データセット(Structured3D)について評価する。
論文 参考訳(メタデータ) (2024-07-20T16:12:51Z) - Enhancing Polygonal Building Segmentation via Oriented Corners [0.3749861135832072]
本稿では,入力画像から直接ポリゴンを抽出する,OriCornerNetという新しいディープ畳み込みニューラルネットワークを提案する。
我々のアプローチは、隣接する角への方向を示すフットプリントマスク、コーナー、配向ベクトルを予測できる深いモデルを含む。
SpaceNet VegasとCrowdAIの小さなデータセットで行った性能評価は、我々のアプローチの競争力を示すものである。
論文 参考訳(メタデータ) (2024-07-17T01:59:06Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
階層変換器を用いた簡易かつ斬新な建物マッピング手法HiTを提案する。
HiTは、分類とバウンディングボックス回帰ヘッドに平行なポリゴンヘッドを追加することによって、2段階検出アーキテクチャの上に構築される。
本手法は, 最先端手法と比較して, 事例分割と多角形メトリクスの両面において, 新たな最先端化を実現している。
論文 参考訳(メタデータ) (2023-09-18T10:24:25Z) - Recurrent Generic Contour-based Instance Segmentation with Progressive
Learning [111.31166268300817]
本稿では,一般的な輪郭型インスタンスセグメンテーションのための新しいディープネットワークアーキテクチャ,すなわちPolySnakeを提案する。
従来のSnakeアルゴリズムに動機付け,提案したPolySnakeはより優れた,堅牢なセグメンテーション性能を実現する。
論文 参考訳(メタデータ) (2023-01-21T05:34:29Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - BuildMapper: A Fully Learnable Framework for Vectorized Building Contour
Extraction [3.862461804734488]
我々はBuildMapperという,エンドツーエンドで学習可能な最初のコントラスト抽出フレームワークを提案する。
BuildMapperは、人間がするのと同じように、直接かつ効率的にポリゴンを構築することができる。
マスク平均精度(AP)とバウンダリAPはセグメンテーションベースと輪郭ベースの両方の手法よりも高い結果が得られることを示す。
論文 参考訳(メタデータ) (2022-11-07T08:58:35Z) - PolyBuilding: Polygon Transformer for End-to-End Building Extraction [9.196604757138825]
PolyBuildingはリモートセンシング画像から建物のベクトル表現を予測する。
モデルはそれらの関係を学習し、画像からコンテキスト情報を符号化し、構築ポリゴンの最終セットを予測する。
また、ピクセルレベルのカバレッジ、インスタンスレベルの精度とリコール、幾何学レベルの特性など、新たな最先端性を実現している。
論文 参考訳(メタデータ) (2022-11-03T04:53:17Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - Quantization in Relative Gradient Angle Domain For Building Polygon
Estimation [88.80146152060888]
CNNアプローチは、しばしばノイズの多いエッジや丸いコーナーを含む不正確な建築形態を生成する。
CNNセグメンテーション出力から角状かつ簡潔なビルディングポリゴンを生成するために,ビルディングコーナーの事前知識を利用するモジュールを提案する。
提案手法は, 円形近似によるCNN出力を, より鮮明な形状の建物足跡に改良することを示した。
論文 参考訳(メタデータ) (2020-07-10T21:33:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。