AVFF: Audio-Visual Feature Fusion for Video Deepfake Detection
- URL: http://arxiv.org/abs/2406.02951v1
- Date: Wed, 5 Jun 2024 05:20:12 GMT
- Title: AVFF: Audio-Visual Feature Fusion for Video Deepfake Detection
- Authors: Trevine Oorloff, Surya Koppisetti, Nicolò Bonettini, Divyaraj Solanki, Ben Colman, Yaser Yacoob, Ali Shahriyari, Gaurav Bharaj,
- Abstract summary: We present Audio-Visual Feature Fusion (AVFF), a two-stage cross-modal learning method for improved deepfake detection.
To extract rich cross-modal representations, we use contrastive learning and autoencoding objectives, and introduce a novel audio-visual masking and feature fusion strategy.
We report 98.6% accuracy and 99.1% AUC on the FakeAVCeleb dataset, outperforming the current audio-visual state-of-the-art by 14.9% and 9.9%, respectively.
- Score: 2.985620880452743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth in deepfake video content, we require improved and generalizable methods to detect them. Most existing detection methods either use uni-modal cues or rely on supervised training to capture the dissonance between the audio and visual modalities. While the former disregards the audio-visual correspondences entirely, the latter predominantly focuses on discerning audio-visual cues within the training corpus, thereby potentially overlooking correspondences that can help detect unseen deepfakes. We present Audio-Visual Feature Fusion (AVFF), a two-stage cross-modal learning method that explicitly captures the correspondence between the audio and visual modalities for improved deepfake detection. The first stage pursues representation learning via self-supervision on real videos to capture the intrinsic audio-visual correspondences. To extract rich cross-modal representations, we use contrastive learning and autoencoding objectives, and introduce a novel audio-visual complementary masking and feature fusion strategy. The learned representations are tuned in the second stage, where deepfake classification is pursued via supervised learning on both real and fake videos. Extensive experiments and analysis suggest that our novel representation learning paradigm is highly discriminative in nature. We report 98.6% accuracy and 99.1% AUC on the FakeAVCeleb dataset, outperforming the current audio-visual state-of-the-art by 14.9% and 9.9%, respectively.
Related papers
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
We introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation.
VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively.
Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features.
arXiv Detail & Related papers (2024-09-27T20:26:34Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation [18.001730255429347]
Audio-visual segmentation (AVS) is a challenging task that involves accurately segmenting sounding objects based on audio-visual cues.
We propose a new cost-effective strategy to build challenging and relatively unbiased high-quality audio-visual segmentation benchmarks.
Experiments conducted on existing AVS datasets and on our new benchmark show that our method achieves state-of-the-art (SOTA) segmentation accuracy.
arXiv Detail & Related papers (2023-04-06T09:54:06Z) - Estimating Visual Information From Audio Through Manifold Learning [14.113590443352495]
We propose a new framework for extracting visual information about a scene only using audio signals.
Our framework is based on Manifold Learning and consists of two steps.
We show that our method is able to produce meaningful images from audio using a publicly available audio/visual dataset.
arXiv Detail & Related papers (2022-08-03T20:47:11Z) - AudioVisual Video Summarization [103.47766795086206]
In video summarization, existing approaches just exploit the visual information while neglecting the audio information.
We propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this.
arXiv Detail & Related papers (2021-05-17T08:36:10Z) - Self-Supervised Learning of Audio-Visual Objects from Video [108.77341357556668]
We introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information over time.
We demonstrate the effectiveness of the audio-visual object embeddings that our model learns by using them for four downstream speech-oriented tasks.
arXiv Detail & Related papers (2020-08-10T16:18:01Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z) - Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using
Affective Cues [75.1731999380562]
We present a learning-based method for detecting real and fake deepfake multimedia content.
We extract and analyze the similarity between the two audio and visual modalities from within the same video.
We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets.
arXiv Detail & Related papers (2020-03-14T22:07:26Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.