論文の概要: Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
- arxiv url: http://arxiv.org/abs/2406.02962v1
- Date: Wed, 5 Jun 2024 05:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 19:49:25.113870
- Title: Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
- Title(参考訳): Docs2KG: 大規模言語モデルによる異種文書からの統一知識グラフ構築
- Authors: Qiang Sun, Yuanyi Luo, Wenxiao Zhang, Sirui Li, Jichunyang Li, Kai Niu, Xiangrui Kong, Wei Liu,
- Abstract要約: エンタープライズデータの80%は非構造化ファイルに格納され、不均一なフォーマットに対応するデータレイクに格納される。
多様な異種文書からマルチモーダル情報を抽出する新しいフレームワークであるDocs2KGを紹介する。
Docs2KGは、抽出されたキー情報を表す統一知識グラフを生成する。
- 参考スコア(独自算出の注目度): 11.959445364035734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.
- Abstract(参考訳): 保守的な推定であっても、エンタープライズデータの80%は非構造化ファイルにあり、不均一なフォーマットに対応するデータレイクに格納されている。
古典的な検索エンジンは、特に洞察の定式化のために検索と探索を行うタスクにおいて、情報検索のニーズを満たすことができない。
言い換えれば、明確な検索キーワードは存在しない。
知識グラフは、人間の認知負荷を減らす自然な視覚的魅力のため、異種データ統合と知識表現の勝者となる。
本稿では,メール,Webページ,PDFファイル,Excelファイルなど,多種多様な非構造化文書からマルチモーダル情報を抽出するための新しいフレームワークであるDocs2KGを紹介する。
動的に抽出されたキー情報を表す統一知識グラフを生成し、Docs2KGは文書データレイクの効率的なクエリと探索を可能にする。
ドメイン固有のデータソースや事前設計されたスキーマにフォーカスする既存のアプローチとは異なり、Docs2KGは様々なドキュメント構造やコンテンツタイプに適応できる柔軟性と拡張性を備えたソリューションを提供する。
提案フレームワークは、複数の下流タスクをサポートするデータ処理を統一し、ドメインの解釈性を改善した。
Docs2KGはhttps://docs2kg.ai4wa.comで公開されており、デモビデオはhttps://docs2kg.ai4wa.com/Videoで公開されている。
関連論文リスト
- Multi-Field Adaptive Retrieval [39.38972160512916]
MFAR(Multi-Field Adaptive Retrieval)は、構造化データ上の任意の文書インデックスに対応するフレキシブルなフレームワークである。
本フレームワークは,(1) 既存の文書のフィールドへの分解,(2) 文書クエリの条件付けによるフィールドの重要性を適応的に予測するモデル学習,という2つのステップから構成される。
提案手法により,フィールドタイプ間での濃密表現と語彙表現の最適化が実現され,既存の検索者よりも文書のランク付けが大幅に向上し,マルチフィールド構造における最先端の性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-26T03:07:22Z) - DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models [63.466265039007816]
我々は、arXivオープンアクセスコミュニティの153の分野から500Kの科学文書を注釈付けして構築した構造化文書ベンチマークDocGenomeを提案する。
我々はDocGenomeの利点を実証するために広範な実験を行い、我々のベンチマークで大規模モデルの性能を客観的に評価した。
論文 参考訳(メタデータ) (2024-06-17T15:13:52Z) - BuDDIE: A Business Document Dataset for Multi-task Information Extraction [18.440587946049845]
BuDDIEは、1,665の現実世界のビジネスドキュメントのマルチタスクデータセットである。
当社のデータセットは、米国政府のウェブサイトから公開されているビジネスエンティティドキュメントで構成されています。
論文 参考訳(メタデータ) (2024-04-05T10:26:42Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
構造化文書をプレーンテキストとして表現することは、これらの文書をリッチな構造でユーザ精神モデルと矛盾する。
本稿では,構造や内容に基づいて,モデルがコンテキストを検索できるPDFTriageを提案する。
ベンチマークデータセットは,80以上の構造化文書に900以上の人間が生成した質問からなる。
論文 参考訳(メタデータ) (2023-09-16T04:29:05Z) - Cross-Modal Entity Matching for Visually Rich Documents [4.8119678510491815]
視覚的にリッチなドキュメントは、視覚的な手がかりを使ってセマンティクスを強化します。
これらのドキュメントの構造化クエリを可能にする既存の作業は、これを考慮に入れない。
この制限に対処するクロスモーダルなエンティティマッチングフレームワークであるJunoを提案する。
論文 参考訳(メタデータ) (2023-03-01T18:26:14Z) - Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots [103.54897676954091]
Doc2Botは、ユーザーが会話を通じて情報を求めるのを助けるマシンを構築するためのデータセットである。
われわれのデータセットには、5つのドメインの中国の文書に基づく10万回以上のターンが含まれている。
論文 参考訳(メタデータ) (2022-10-20T07:33:05Z) - Doc2Graph: a Task Agnostic Document Understanding Framework based on
Graph Neural Networks [0.965964228590342]
GNNモデルに基づくタスクに依存しない文書理解フレームワークDoc2Graphを提案する。
形態理解,請求書レイアウト解析,テーブル検出における鍵情報抽出のための2つの挑戦的データセットに対するアプローチを評価する。
論文 参考訳(メタデータ) (2022-08-23T19:48:10Z) - Doc-GCN: Heterogeneous Graph Convolutional Networks for Document Layout
Analysis [4.920817773181236]
我々のDoc-GCNは、文書レイアウト分析のための異種側面の調和と統合に有効な方法を提供する。
まず、構文、意味、密度、外見/視覚情報を含む4つの主要な側面を明示的に記述するグラフを構築した。
情報の各側面を表現するためにグラフ畳み込みネットワークを適用し、それらを統合するためにプールを使用する。
論文 参考訳(メタデータ) (2022-08-22T07:22:05Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
文書レイアウト解析のための詳細なトークンレベルのアノテーションを備えた500Kドキュメントページを含むベンチマークデータセットである textbfDocBank を提示する。
実験の結果,DocBankでトレーニングされたモデルは,さまざまなドキュメントのレイアウト情報を正確に認識することがわかった。
論文 参考訳(メタデータ) (2020-06-01T16:04:30Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
ドキュメントレベルで大規模な情報抽出データセットを作成するのは難しい。
複数のIEタスクを含む文書レベルのIEデータセットであるSciREXを紹介する。
我々は、従来の最先端のIEモデルをドキュメントレベルのIEに拡張する強力なベースラインとして、ニューラルモデルを開発する。
論文 参考訳(メタデータ) (2020-05-01T17:30:10Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。