論文の概要: Instructing Prompt-to-Prompt Generation for Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2406.03032v1
- Date: Wed, 5 Jun 2024 07:59:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 19:29:27.254789
- Title: Instructing Prompt-to-Prompt Generation for Zero-Shot Learning
- Title(参考訳): ゼロショット学習のためのプロンプト・ツー・プロンプト生成の指導
- Authors: Man Liu, Huihui Bai, Feng Li, Chunjie Zhang, Yunchao Wei, Meng Wang, Tat-Seng Chua, Yao Zhao,
- Abstract要約: 伝達可能な知識発見のための指導的視覚的プロンプトを蒸留するためのtextbfPrompt-to-textbfPrompt 生成手法 (textbfP2P) を提案する。
P2Pのコアとなるのは、アクセシブル条件付き視覚特徴と、モーダル共有セマンティック概念に関するテキスト命令からセマンティック関連命令をマイニングすることである。
- 参考スコア(独自算出の注目度): 116.33775552866476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning (ZSL) aims to explore the semantic-visual interactions to discover comprehensive knowledge transferred from seen categories to classify unseen categories. Recently, prompt engineering has emerged in ZSL, demonstrating impressive potential as it enables the zero-shot transfer of diverse visual concepts to downstream tasks. However, these methods are still not well generalized to broad unseen domains. A key reason is that the fixed adaption of learnable prompts on seen domains makes it tend to over-emphasize the primary visual features observed during training. In this work, we propose a \textbf{P}rompt-to-\textbf{P}rompt generation methodology (\textbf{P2P}), which addresses this issue by further embracing the instruction-following technique to distill instructive visual prompts for comprehensive transferable knowledge discovery. The core of P2P is to mine semantic-related instruction from prompt-conditioned visual features and text instruction on modal-sharing semantic concepts and then inversely rectify the visual representations with the guidance of the learned instruction prompts. This enforces the compensation for missing visual details to primary contexts and further eliminates the cross-modal disparity, endowing unseen domain generalization. Through extensive experimental results, we demonstrate the efficacy of P2P in achieving superior performance over state-of-the-art methods.
- Abstract(参考訳): ゼロショット学習(ZSL)は、目に見えないカテゴリを分類するために、目に見えないカテゴリから移行した包括的知識を発見するために、意味と視覚の相互作用を探索することを目的としている。
近年、ZSLでは、多様な視覚概念を下流タスクにゼロショットで転送できるなど、迅速なエンジニアリングが実現している。
しかし、これらの方法はまだ広く見えない領域に対して十分に一般化されていない。
主な理由は、学習可能なプロンプトが学習時に観察される主要な視覚的特徴を過度に強調する傾向があるためである。
本稿では, 包括的伝達可能な知識発見のために, 命令追従手法を更に取り入れることで, この問題に対処する。
P2Pのコアとなるのは、アクセシブル条件付き視覚特徴とモーダル共有セマンティック概念に関するテキスト命令からセマンティック関連インストラクションを抽出し、学習したインストラクションプロンプトのガイダンスで視覚表現を逆修正することである。
これにより、視覚的詳細の欠如に対する補償が一次文脈に課せられ、また、目に見えない領域の一般化によって、モデアルの相違が解消される。
実験により,P2Pが最先端手法よりも優れた性能を発揮することを示す。
関連論文リスト
- Advancing Prompt Learning through an External Layer [24.77977865016954]
本稿では,新しい外部層(EnLa)を備えたEnPromptというパラダイムを提案する。
学習可能な外部レイヤは、トレーニング済みのCLIPの有効な埋め込みに基づいて構築される。
4つの実験により,本手法が既存の即時学習法より優れていることが示された。
論文 参考訳(メタデータ) (2024-07-29T03:30:09Z) - Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning [56.65891462413187]
ゼロショット学習のためのプログレッシブセマンティック誘導型視覚変換器(ZSLViT)を提案する。
ZSLViTは、まずセマンティック・エンベッドド・トークン・ラーニングを導入し、セマンティック・エンハンスメントを通じて視覚・セマンティック対応を改善する。
そして,視覚的強調のために,意味的無関係な視覚情報を捨てるために,低意味的・視覚的対応型視覚トークンを融合する。
論文 参考訳(メタデータ) (2024-04-11T12:59:38Z) - COMMA: Co-Articulated Multi-Modal Learning [39.778958624066185]
本稿では,従来の手法の制約に対処するため,COMMA(Co-Articulated Multi-Modal Learning)を提案する。
本手法は,両枝の表現アライメントを高めるプロンプトを生成するために,両枝からのプロンプトを考察する。
提案手法は,新しいクラスへの一般化,新しいターゲットデータセット,目に見えないドメインシフトの3つのタスクにまたがって評価する。
論文 参考訳(メタデータ) (2023-12-30T15:47:36Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
本研究では,改良型プロンプト拡散(iPromptDiff)を紹介する。
iPromptDiffは、視覚コンテキストを埋め込みベクトルに変換するエンドツーエンドのトレーニングされた視覚エンコーダを統合する。
拡散に基づく視覚基盤モデルにおいて,この視覚的文脈変調テキストガイダンスと標準制御ネット構造を組み込んだ場合,多種多様な学習課題における多目的性と堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2023-12-03T14:15:52Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
本稿では,視覚言語モデルのためのKnowledge-Aware Prompt Tuning(KAPT)フレームワークを提案する。
我々のアプローチは、人間の知性からインスピレーションを得ており、外部知識は、通常、オブジェクトの新たなカテゴリを認識するために組み込まれています。
論文 参考訳(メタデータ) (2023-08-22T04:24:45Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
本稿では,この問題を緩和するために,学習者の注意を再構築する新しい手法,Decoupled Prompt Learningを提案する。
我々のアプローチは、視覚的・テキスト的モダリティの両方に柔軟であり、マルチモーダル・プロンプト・ラーニングに容易に拡張できる。
論文 参考訳(メタデータ) (2023-08-19T15:48:38Z) - Progressive Visual Prompt Learning with Contrastive Feature Re-formation [15.385630262368661]
本稿では,異なるレイヤのプロンプト間の相互作用を強化するために,プログレッシブ・ビジュアル・プロンプト(ProVP)構造を提案する。
我々のProVPは、画像の埋め込みを深い層に効果的に伝播させ、インスタンス適応的なプロンプトメソッドと部分的に似た振る舞いをすることができる。
我々の知る限り、我々はV-Lモデルにおける視覚的プロンプトの、下流タスクにおける従来のプロンプトベースの手法よりも優れた性能を示す最初の人物である。
論文 参考訳(メタデータ) (2023-04-17T15:54:10Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
本稿では、視覚と言語モデルのための新しいアンダーラインテキストbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL)法を提案する。
CPLは、共同最適化フレームワークにおいて、反ファクト生成とコントラスト学習を同時に採用している。
実験により、CPLは異なるビジョンと言語タスクにおいて優れた数ショットのパフォーマンスを得ることができることが示された。
論文 参考訳(メタデータ) (2022-10-19T08:06:39Z) - Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt [71.77504700496004]
視覚言語モデルは、オープンセットの視覚概念を扱うために、画像とテキストのペアを共通の空間に整列させることで事前訓練される。
事前訓練されたモデルの転送可能性を高めるため、最近の研究では、固定または学習可能なプロンプトが採用されている。
しかし、どのようにして、どのプロンプトが推論性能を改善するのかは、まだ不明である。
論文 参考訳(メタデータ) (2022-05-23T07:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。