Instructing Prompt-to-Prompt Generation for Zero-Shot Learning
- URL: http://arxiv.org/abs/2406.03032v1
- Date: Wed, 5 Jun 2024 07:59:48 GMT
- Title: Instructing Prompt-to-Prompt Generation for Zero-Shot Learning
- Authors: Man Liu, Huihui Bai, Feng Li, Chunjie Zhang, Yunchao Wei, Meng Wang, Tat-Seng Chua, Yao Zhao,
- Abstract summary: We propose a textbfPrompt-to-textbfPrompt generation methodology (textbfP2P) to distill instructive visual prompts for transferable knowledge discovery.
The core of P2P is to mine semantic-related instruction from prompt-conditioned visual features and text instruction on modal-sharing semantic concepts.
- Score: 116.33775552866476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning (ZSL) aims to explore the semantic-visual interactions to discover comprehensive knowledge transferred from seen categories to classify unseen categories. Recently, prompt engineering has emerged in ZSL, demonstrating impressive potential as it enables the zero-shot transfer of diverse visual concepts to downstream tasks. However, these methods are still not well generalized to broad unseen domains. A key reason is that the fixed adaption of learnable prompts on seen domains makes it tend to over-emphasize the primary visual features observed during training. In this work, we propose a \textbf{P}rompt-to-\textbf{P}rompt generation methodology (\textbf{P2P}), which addresses this issue by further embracing the instruction-following technique to distill instructive visual prompts for comprehensive transferable knowledge discovery. The core of P2P is to mine semantic-related instruction from prompt-conditioned visual features and text instruction on modal-sharing semantic concepts and then inversely rectify the visual representations with the guidance of the learned instruction prompts. This enforces the compensation for missing visual details to primary contexts and further eliminates the cross-modal disparity, endowing unseen domain generalization. Through extensive experimental results, we demonstrate the efficacy of P2P in achieving superior performance over state-of-the-art methods.
Related papers
- Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
We propose a Dual Relation Mining Network (DRMN) to enable effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer.
Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion.
For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images.
arXiv Detail & Related papers (2024-05-06T16:31:19Z) - CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning [48.46511584490582]
Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories.
Real-world challenges such as distribution imbalances and attribute co-occurrence hinder the discernment of local variances in images.
We propose a bidirectional cross-modal ZSL approach CREST to overcome these challenges.
arXiv Detail & Related papers (2024-04-15T10:19:39Z) - Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning [56.65891462413187]
We propose a progressive semantic-guided vision transformer for zero-shot learning (dubbed ZSLViT)
ZSLViT first introduces semantic-embedded token learning to improve the visual-semantic correspondences via semantic enhancement.
Then, we fuse low semantic-visual correspondence visual tokens to discard the semantic-unrelated visual information for visual enhancement.
arXiv Detail & Related papers (2024-04-11T12:59:38Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
We propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models.
Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects.
arXiv Detail & Related papers (2023-08-22T04:24:45Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR)
Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner.
Experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets.
arXiv Detail & Related papers (2022-05-03T17:39:27Z) - MSDN: Mutually Semantic Distillation Network for Zero-Shot Learning [28.330268557106912]
Key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge between visual and attribute features on seen classes.
We propose a Mutually Semantic Distillation Network (MSDN), which progressively distills the intrinsic semantic representations between visual and attribute features.
arXiv Detail & Related papers (2022-03-07T05:27:08Z) - Zero-Shot Learning Based on Knowledge Sharing [0.0]
Zero-Shot Learning (ZSL) is an emerging research that aims to solve the classification problems with very few training data.
This paper introduces knowledge sharing (KS) to enrich the representation of semantic features.
Based on KS, we apply a generative adversarial network to generate pseudo visual features from semantic features that are very close to the real visual features.
arXiv Detail & Related papers (2021-02-26T06:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.