論文の概要: Attend and Enrich: Enhanced Visual Prompt for Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2406.03032v3
- Date: Sun, 09 Mar 2025 03:48:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:04.374242
- Title: Attend and Enrich: Enhanced Visual Prompt for Zero-Shot Learning
- Title(参考訳): Attend and Enrich: ゼロショット学習のための強化されたビジュアルプロンプト
- Authors: Man Liu, Huihui Bai, Feng Li, Chunjie Zhang, Yunchao Wei, Tat-Seng Chua, Yao Zhao,
- Abstract要約: 視覚表現豊か化のための意味強調プロンプトを抽出するための視覚的プロンプトに意味情報を付与するAENetを提案する。
AENetは、2つの重要なステップから構成される: 1) 視覚的・属性的モダリティの概念調和トークンを探索し、一貫した視覚的セマンティックな概念を表す様相共有トークンに基づく。
- 参考スコア(独自算出の注目度): 114.59476118365266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning (ZSL) endeavors to transfer knowledge from seen categories to recognize unseen categories, which mostly relies on the semantic-visual interactions between image and attribute tokens. Recently, prompt learning has emerged in ZSL and demonstrated significant potential as it allows the zero-shot transfer of diverse visual concepts to downstream tasks. However, current methods explore the fixed adaption of learnable prompt on seen domains, which makes them over-emphasize the primary visual features observed during training, limiting their generalization capabilities to unseen domains. In this work, we propose AENet, which endows semantic information into the visual prompt to distill semantic-enhanced prompt for visual representation enrichment, enabling effective knowledge transfer for ZSL. AENet comprises two key steps: 1) exploring the concept-harmonized tokens for the visual and attribute modalities, grounded on the modal-sharing token that represents consistent visual-semantic concepts; and 2) yielding semantic-enhanced prompt via the visual residual refinement unit with attribute consistency supervision. These are further integrated with primary visual features to attend to semantic-related information for visual enhancement, thus strengthening transferable ability. Experimental results on three benchmarks show that our AENet outperforms existing state-of-the-art ZSL methods. The code is provided in the zip file of supplementary materials.
- Abstract(参考訳): ゼロショット学習(ZSL)は、画像と属性トークン間の意味的・視覚的相互作用に大きく依存する、目に見えないカテゴリを認識するために、目に見えないカテゴリから知識を伝達する試みである。
近年、ZSLに即時学習が登場し、様々な視覚概念を下流タスクにゼロショットで転送できるなど、大きな可能性を秘めている。
しかし、現在の手法では、学習可能なプロンプトが目に見える領域に固定された適応を探索し、トレーニング中に観察される主要な視覚的特徴を過度に強調し、一般化能力を目に見えない領域に限定している。
本研究では,意味情報を視覚的プロンプトに付与し,視覚表現豊か化のための意味強調プロンプトを抽出し,ZSLの効果的な知識伝達を可能にするAENetを提案する。
AENetには2つの重要なステップがある。
1)一貫した視覚的・意味的概念を表す様相共有トークンに基づく視覚的・属性的モダリティの概念調和トークンの探索
2) 属性整合性管理を伴う視覚的残差改善単位を介して意味増強プロンプトを付与する。
これらは、視覚的拡張のための意味関連情報に対応するために、主要な視覚的特徴とさらに統合され、伝達能力が強化される。
3つのベンチマークによる実験結果から、AENetは既存の最先端ZSL法よりも優れていることがわかった。
コードは補充材料のzipファイルに提供される。
関連論文リスト
- Visual and Semantic Prompt Collaboration for Generalized Zero-Shot Learning [58.73625654718187]
一般化されたゼロショット学習は、異なるクラス間で共有される意味情報の助けを借りて、目に見えないクラスと見えないクラスの両方を認識することを目的としている。
既存のアプローチでは、視覚的バックボーンをルッククラスのデータで微調整し、セマンティックな視覚的特徴を得る。
本稿では,効率的な特徴適応のためのプロンプトチューニング技術を活用した,視覚的・意味的プロンプト協調フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-29T10:17:57Z) - InPK: Infusing Prior Knowledge into Prompt for Vision-Language Models [24.170351966913557]
学習可能なトークンにクラス固有の事前知識を注入するInPKモデルを提案する。
また、テキスト調整に対応するための学習可能なテキスト・ツー・ビジョン・プロジェクション・レイヤも導入する。
実験では、InPKは複数のゼロ/ファウショット画像分類タスクにおいて最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2025-02-27T05:33:18Z) - Advancing Prompt Learning through an External Layer [24.77977865016954]
本稿では,新しい外部層(EnLa)を備えたEnPromptというパラダイムを提案する。
学習可能な外部レイヤは、トレーニング済みのCLIPの有効な埋め込みに基づいて構築される。
4つの実験により,本手法が既存の即時学習法より優れていることが示された。
論文 参考訳(メタデータ) (2024-07-29T03:30:09Z) - Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
本稿では,効果的な視覚・意味的相互作用を実現し,知識伝達のための属性間の意味的関係を学習するためのDual Relation Mining Network(DRMN)を提案する。
具体的には,多層的特徴融合により視覚情報を強化する視覚・意味的関係マイニングのためのデュアルアテンションブロック(DAB)を提案する。
セマンティック・インタラクション・トランスフォーマ(SIT)を用いて画像間の属性表現の一般化を促進する。
論文 参考訳(メタデータ) (2024-05-06T16:31:19Z) - Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning [56.65891462413187]
ゼロショット学習のためのプログレッシブセマンティック誘導型視覚変換器(ZSLViT)を提案する。
ZSLViTは、まずセマンティック・エンベッドド・トークン・ラーニングを導入し、セマンティック・エンハンスメントを通じて視覚・セマンティック対応を改善する。
そして,視覚的強調のために,意味的無関係な視覚情報を捨てるために,低意味的・視覚的対応型視覚トークンを融合する。
論文 参考訳(メタデータ) (2024-04-11T12:59:38Z) - COMMA: Co-Articulated Multi-Modal Learning [39.778958624066185]
本稿では,従来の手法の制約に対処するため,COMMA(Co-Articulated Multi-Modal Learning)を提案する。
本手法は,両枝の表現アライメントを高めるプロンプトを生成するために,両枝からのプロンプトを考察する。
提案手法は,新しいクラスへの一般化,新しいターゲットデータセット,目に見えないドメインシフトの3つのタスクにまたがって評価する。
論文 参考訳(メタデータ) (2023-12-30T15:47:36Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
本研究では,改良型プロンプト拡散(iPromptDiff)を紹介する。
iPromptDiffは、視覚コンテキストを埋め込みベクトルに変換するエンドツーエンドのトレーニングされた視覚エンコーダを統合する。
拡散に基づく視覚基盤モデルにおいて,この視覚的文脈変調テキストガイダンスと標準制御ネット構造を組み込んだ場合,多種多様な学習課題における多目的性と堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2023-12-03T14:15:52Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
本稿では,視覚言語モデルのためのKnowledge-Aware Prompt Tuning(KAPT)フレームワークを提案する。
我々のアプローチは、人間の知性からインスピレーションを得ており、外部知識は、通常、オブジェクトの新たなカテゴリを認識するために組み込まれています。
論文 参考訳(メタデータ) (2023-08-22T04:24:45Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
本稿では,この問題を緩和するために,学習者の注意を再構築する新しい手法,Decoupled Prompt Learningを提案する。
我々のアプローチは、視覚的・テキスト的モダリティの両方に柔軟であり、マルチモーダル・プロンプト・ラーニングに容易に拡張できる。
論文 参考訳(メタデータ) (2023-08-19T15:48:38Z) - Progressive Visual Prompt Learning with Contrastive Feature Re-formation [15.385630262368661]
本稿では,異なるレイヤのプロンプト間の相互作用を強化するために,プログレッシブ・ビジュアル・プロンプト(ProVP)構造を提案する。
我々のProVPは、画像の埋め込みを深い層に効果的に伝播させ、インスタンス適応的なプロンプトメソッドと部分的に似た振る舞いをすることができる。
我々の知る限り、我々はV-Lモデルにおける視覚的プロンプトの、下流タスクにおける従来のプロンプトベースの手法よりも優れた性能を示す最初の人物である。
論文 参考訳(メタデータ) (2023-04-17T15:54:10Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
本稿では,セマンティック誘導視覚適応(SgVA)と呼ばれる新しいフレームワークを提案する。
SgVAは、視覚特異的のコントラスト損失、クロスモーダルのコントラスト損失、暗黙の知識蒸留を包括的に利用することで、識別的なタスク固有の視覚特徴を生成する。
13のデータセットの最先端の結果は、適応された視覚的特徴が、クロスモーダルな特徴を補完し、少数の画像分類を改善することを実証している。
論文 参考訳(メタデータ) (2022-11-28T14:58:15Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
本稿では、視覚と言語モデルのための新しいアンダーラインテキストbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL)法を提案する。
CPLは、共同最適化フレームワークにおいて、反ファクト生成とコントラスト学習を同時に採用している。
実験により、CPLは異なるビジョンと言語タスクにおいて優れた数ショットのパフォーマンスを得ることができることが示された。
論文 参考訳(メタデータ) (2022-10-19T08:06:39Z) - Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt [71.77504700496004]
視覚言語モデルは、オープンセットの視覚概念を扱うために、画像とテキストのペアを共通の空間に整列させることで事前訓練される。
事前訓練されたモデルの転送可能性を高めるため、最近の研究では、固定または学習可能なプロンプトが採用されている。
しかし、どのようにして、どのプロンプトが推論性能を改善するのかは、まだ不明である。
論文 参考訳(メタデータ) (2022-05-23T07:51:15Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
我々は、ゼロショット動作認識(ZSAR)のためのビデオデータとテキストラベルを共同で符号化するクロスモーダルトランスフォーマーベースのフレームワークを提案する。
我々のモデルは概念的に新しいパイプラインを使用し、視覚的表現と視覚的意味的関連をエンドツーエンドで学習する。
実験結果から,本モデルはZSARの芸術的状況に大きく改善され,UCF101,HMDB51,ActivityNetベンチマークデータセット上でトップ1の精度が向上した。
論文 参考訳(メタデータ) (2022-05-03T17:39:27Z) - MSDN: Mutually Semantic Distillation Network for Zero-Shot Learning [28.330268557106912]
ゼロショット学習(ZSL)の主な課題は、視覚的特徴と属性的特徴の間に潜む意味的知識を、どのように推測するかである。
本稿では,視覚的特徴と属性的特徴の間の固有意味表現を段階的に蒸留する,MSDN(Mtually Semantic Distillation Network)を提案する。
論文 参考訳(メタデータ) (2022-03-07T05:27:08Z) - Zero-Shot Learning Based on Knowledge Sharing [0.0]
Zero-Shot Learning(ZSL)は、ごくわずかなトレーニングデータで分類問題を解決することを目的とした新しい研究です。
本稿では,意味的特徴の表現を充実させるために,知識共有(KS)を導入する。
KSをベースとして,実際の視覚特徴に非常に近い意味的特徴から擬似視覚特徴を生成するために,生成的対向ネットワークを適用した。
論文 参考訳(メタデータ) (2021-02-26T06:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。