When Spiking neural networks meet temporal attention image decoding and adaptive spiking neuron
- URL: http://arxiv.org/abs/2406.03046v1
- Date: Wed, 5 Jun 2024 08:21:55 GMT
- Title: When Spiking neural networks meet temporal attention image decoding and adaptive spiking neuron
- Authors: Xuerui Qiu, Zheng Luan, Zhaorui Wang, Rui-Jie Zhu,
- Abstract summary: Spiking Neural Networks (SNNs) are capable of encoding and processing temporal information in a biologically plausible way.
We propose a novel method for image decoding based on temporal attention (TAID) and an adaptive Leaky-Integrate-and-Fire neuron model.
- Score: 7.478056407323783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) are capable of encoding and processing temporal information in a biologically plausible way. However, most existing SNN-based methods for image tasks do not fully exploit this feature. Moreover, they often overlook the role of adaptive threshold in spiking neurons, which can enhance their dynamic behavior and learning ability. To address these issues, we propose a novel method for image decoding based on temporal attention (TAID) and an adaptive Leaky-Integrate-and-Fire (ALIF) neuron model. Our method leverages the temporal information of SNN outputs to generate high-quality images that surpass the state-of-the-art (SOTA) in terms of Inception score, Fr\'echet Inception Distance, and Fr\'echet Autoencoder Distance. Furthermore, our ALIF neuron model achieves remarkable classification accuracy on MNIST (99.78\%) and CIFAR-10 (93.89\%) datasets, demonstrating the effectiveness of learning adaptive thresholds for spiking neurons. The code is available at https://github.com/bollossom/ICLR_TINY_SNN.
Related papers
- Adaptive Spiking Neural Networks with Hybrid Coding [0.0]
Spi-temporal Neural Network (SNN) is a more energy-efficient and effective neural network compared to Artificial Neural Networks (ANNs)
Traditional SNNs utilize same neurons when processing input data across different time steps, limiting their ability to integrate and utilizetemporal information effectively.
This paper introduces a hybrid encoding approach that not only reduces the required time steps for training but also continues to improve the overall network performance.
arXiv Detail & Related papers (2024-08-22T13:58:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural
Networks [3.7384509727711923]
A major challenge for neuromorphic computing is that learning algorithms for traditional artificial neural networks (ANNs) do not transfer directly to spiking neural networks (SNNs)
In this article, we focus on the self-supervised learning problem of optical flow estimation from event-based camera inputs.
We show that the performance of the proposed ANNs and SNNs are on par with that of the current state-of-the-art ANNs trained in a self-supervised manner.
arXiv Detail & Related papers (2021-06-03T14:03:41Z) - Incorporating Learnable Membrane Time Constant to Enhance Learning of
Spiking Neural Networks [36.16846259899793]
Spiking Neural Networks (SNNs) have attracted enormous research interest due to temporal information processing capability, low power consumption, and high biological plausibility.
Most existing learning methods learn weights only, and require manual tuning of the membrane-related parameters that determine the dynamics of a single spiking neuron.
In this paper, we take inspiration from the observation that membrane-related parameters are different across brain regions, and propose a training algorithm that is capable of learning not only the synaptic weights but also the membrane time constants of SNNs.
arXiv Detail & Related papers (2020-07-11T14:35:42Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.