論文の概要: EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
- arxiv url: http://arxiv.org/abs/2406.03095v2
- Date: Thu, 6 Jun 2024 05:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 13:01:03.540376
- Title: EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
- Title(参考訳): EgoSurgery-Tool: Egocentric Open Surgery Videoによる手術用ツールと手指検出のデータセット
- Authors: Ryo Fujii, Hideo Saito, Hiroki Kajita,
- Abstract要約: EgoSurgery-Phaseデータセットの拡張であるEgoSurgery-Toolを紹介する。
EgoSurgery-Toolは15のカテゴリにまたがる49K以上の手術用ツールで構成され、大規模な手術用ツール検出データセットを構成する。
9つの一般的な物体検出器を用いてEgoSurgery-Toolの包括的解析を行い,手術器具と手指検出の両面での有効性を検証した。
- 参考スコア(独自算出の注目度): 8.134387035379879
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
- Abstract(参考訳): 外科的ツール検出は、自我中心のオープンな手術ビデオを理解するための基本的なタスクである。
しかし, 外科的ツールの検出は, 高度に不均衡なクラス分布, 類似の形状, 類似のテクスチャ, 重閉塞など, 重大な課題を呈している。
包括的な大規模データセットの欠如はこれらの課題を複雑にしている。
本稿では,EgoSurgery-Phaseデータセットの拡張であるEgoSurgery-Toolについて紹介する。
EgoSurgery-Toolは、手術用ツールに強く注釈付けされており、15のカテゴリにまたがる49K以上の手術用ツールで構成されており、大規模な手術用ツール検出データセットを構成している。
EgoSurgery-Toolはまた、46K以上のハンドバウンディングボックスで手検出のためのアノテーションを提供しており、自我中心の開腹手術における活動を理解するのに不可欠な手と物体の相互作用を捉えている。
EgoSurgery-Toolは、大規模な、より多様な手術ツール、より多くのアノテーション、より密集したシーンのために、既存のデータセットよりも優れている。
9つの一般的な物体検出器を用いてEgoSurgery-Toolの包括的解析を行い,手術器具と手指検出の両面での有効性を検証した。
データセットはhttps://github.com/Fujiry0/EgoSurgery.comでリリースされる。
関連論文リスト
- SURGIVID: Annotation-Efficient Surgical Video Object Discovery [42.16556256395392]
手術シーンのセマンティックセグメンテーションのためのアノテーション効率のよいフレームワークを提案する。
我々は,画像に基づく自己監督型物体発見法を用いて,外科的ビデオにおいて最も有能なツールや解剖学的構造を同定する。
完全教師付きセグメンテーションモデルを用いて,36のアノテーションラベルで強化した無教師付きセットアップでは,同程度のローカライゼーション性能を示す。
論文 参考訳(メタデータ) (2024-09-12T07:12:20Z) - Amodal Segmentation for Laparoscopic Surgery Video Instruments [30.39518393494816]
医療分野における手術器具の領域にAmodalVisを導入する。
このテクニックは、オブジェクトの可視部と隠蔽部の両方を識別する。
これを実現するために,新しいAmoal Instrumentsデータセットを導入する。
論文 参考訳(メタデータ) (2024-08-02T07:40:34Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
外科的動作認識と意味計測のセグメンテーションのための,最初のマルチモーダルなインビボデータセットを公開し,ロボット補助根治術(RARP)の50の縫合ビデオセグメントを収録した。
この課題の目的は、提供されたデータセットのスケールを活用し、外科領域における堅牢で高精度なシングルタスクアクション認識とツールセグメンテーションアプローチを開発することである。
合計12チームがこのチャレンジに参加し、7つのアクション認識方法、9つの計器のセグメンテーション手法、そしてアクション認識と計器のセグメンテーションを統合した4つのマルチタスクアプローチをコントリビュートした。
論文 参考訳(メタデータ) (2023-12-31T13:32:18Z) - POV-Surgery: A Dataset for Egocentric Hand and Tool Pose Estimation
During Surgical Activities [4.989930168854209]
POV-Surgeryは、異なる手術用手袋と3つの整形外科器具を持つ手のポーズ推定に焦点を当てた、大規模で合成されたエゴセントリックなデータセットである。
我々のデータセットは53のシーケンスと88,329のフレームで構成され、高解像度のRGB-Dビデオストリームとアクティビティアノテーションを備えている。
我々はPOV-Surgeryにおける現在のSOTA法を微調整し、手術用手袋と工具を用いた実生活症例に適用する際の一般化性を示す。
論文 参考訳(メタデータ) (2023-07-19T18:00:32Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
静止カメラとヘッドマウントカメラを組み合わせたマルチカメラ・キャプチャー・セットアップを提案する。
第2に,手術用ウェットラボと実際の手術用劇場で撮影された元脊椎手術のマルチビューRGB-Dビデオデータセットを公表した。
第3に,手術器具の6DoFポーズ推定の課題に対して,最先端のシングルビューとマルチビューの3つの手法を評価した。
論文 参考訳(メタデータ) (2023-05-05T13:42:19Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges
and methods [15.833413083110903]
本稿では,内視鏡下低侵襲手術における外科医の行動検出問題に取り組むための,最初の大規模データセットであるesadについて述べる。
このデータセットは、前立腺切除術中にキャプチャされた実際の内視鏡的ビデオフレーム上の21のアクションクラスに対するバウンディングボックスアノテーションを提供し、最近のMIDL 2020チャレンジのベースとして使用された。
論文 参考訳(メタデータ) (2021-04-07T15:11:51Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。