EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
- URL: http://arxiv.org/abs/2406.03095v2
- Date: Thu, 6 Jun 2024 05:28:27 GMT
- Title: EgoSurgery-Tool: A Dataset of Surgical Tool and Hand Detection from Egocentric Open Surgery Videos
- Authors: Ryo Fujii, Hideo Saito, Hiroki Kajita,
- Abstract summary: We introduce EgoSurgery-Tool, an extension of the EgoSurgery-Phase dataset.
EgoSurgery-Tool comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset.
We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection.
- Score: 8.134387035379879
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Surgical tool detection is a fundamental task for understanding egocentric open surgery videos. However, detecting surgical tools presents significant challenges due to their highly imbalanced class distribution, similar shapes and similar textures, and heavy occlusion. The lack of a comprehensive large-scale dataset compounds these challenges. In this paper, we introduce EgoSurgery-Tool, an extension of the existing EgoSurgery-Phase dataset, which contains real open surgery videos captured using an egocentric camera attached to the surgeon's head, along with phase annotations. EgoSurgery-Tool has been densely annotated with surgical tools and comprises over 49K surgical tool bounding boxes across 15 categories, constituting a large-scale surgical tool detection dataset. EgoSurgery-Tool also provides annotations for hand detection with over 46K hand-bounding boxes, capturing hand-object interactions that are crucial for understanding activities in egocentric open surgery. EgoSurgery-Tool is superior to existing datasets due to its larger scale, greater variety of surgical tools, more annotations, and denser scenes. We conduct a comprehensive analysis of EgoSurgery-Tool using nine popular object detectors to assess their effectiveness in both surgical tool and hand detection. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
Related papers
- SURGIVID: Annotation-Efficient Surgical Video Object Discovery [42.16556256395392]
We propose an annotation-efficient framework for the semantic segmentation of surgical scenes.
We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos.
Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models.
arXiv Detail & Related papers (2024-09-12T07:12:20Z) - Amodal Segmentation for Laparoscopic Surgery Video Instruments [30.39518393494816]
We introduce AmodalVis to the realm of surgical instruments in the medical field.
This technique identifies both the visible and occluded parts of an object.
To achieve this, we introduce a new Amoal Instruments dataset.
arXiv Detail & Related papers (2024-08-02T07:40:34Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
We release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP)
The aim of the challenge is to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain.
A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.
arXiv Detail & Related papers (2023-12-31T13:32:18Z) - POV-Surgery: A Dataset for Egocentric Hand and Tool Pose Estimation
During Surgical Activities [4.989930168854209]
POV-Surgery is a large-scale, synthetic, egocentric dataset focusing on pose estimation for hands with different surgical gloves and three orthopedic surgical instruments.
Our dataset consists of 53 sequences and 88,329 frames, featuring high-resolution RGB-D video streams with activity annotations.
We fine-tune the current SOTA methods on POV-Surgery and further show the generalizability when applying to real-life cases with surgical gloves and tools.
arXiv Detail & Related papers (2023-07-19T18:00:32Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges
and methods [15.833413083110903]
This paper presents ESAD, the first large-scale dataset designed to tackle the problem of surgeon action detection in endoscopic minimally invasive surgery.
The dataset provides bounding box annotation for 21 action classes on real endoscopic video frames captured during prostatectomy, and was used as the basis of a recent MIDL 2020 challenge.
arXiv Detail & Related papers (2021-04-07T15:11:51Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.