SURGIVID: Annotation-Efficient Surgical Video Object Discovery
- URL: http://arxiv.org/abs/2409.07801v1
- Date: Thu, 12 Sep 2024 07:12:20 GMT
- Title: SURGIVID: Annotation-Efficient Surgical Video Object Discovery
- Authors: Çağhan Köksal, Ghazal Ghazaei, Nassir Navab,
- Abstract summary: We propose an annotation-efficient framework for the semantic segmentation of surgical scenes.
We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos.
Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models.
- Score: 42.16556256395392
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surgical scenes convey crucial information about the quality of surgery. Pixel-wise localization of tools and anatomical structures is the first task towards deeper surgical analysis for microscopic or endoscopic surgical views. This is typically done via fully-supervised methods which are annotation greedy and in several cases, demanding medical expertise. Considering the profusion of surgical videos obtained through standardized surgical workflows, we propose an annotation-efficient framework for the semantic segmentation of surgical scenes. We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos. These proposals are further refined within a minimally supervised fine-tuning step. Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models. Further, leveraging surgical phase labels as weak labels can better guide model attention towards surgical tools, leading to $\sim 2\%$ improvement in tool localization. Extensive ablation studies on the CaDIS dataset validate the effectiveness of our proposed solution in discovering relevant surgical objects with minimal or no supervision.
Related papers
- Cataract-1K: Cataract Surgery Dataset for Scene Segmentation, Phase
Recognition, and Irregularity Detection [5.47960852753243]
We present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis.
We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures.
The dataset and annotations will be publicly available upon acceptance of the paper.
arXiv Detail & Related papers (2023-12-11T10:53:05Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - SAMSNeRF: Segment Anything Model (SAM) Guides Dynamic Surgical Scene
Reconstruction by Neural Radiance Field (NeRF) [4.740415113160021]
We propose a novel approach called SAMSNeRF that combines Segment Anything Model (SAM) and Neural Radiance Field (NeRF) techniques.
Our experimental results on public endoscopy surgical videos demonstrate that our approach successfully reconstructs high-fidelity dynamic surgical scenes.
arXiv Detail & Related papers (2023-08-22T20:31:00Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - CholecTriplet2022: Show me a tool and tell me the triplet -- an
endoscopic vision challenge for surgical action triplet detection [41.66666272822756]
This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection.
It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool) as the key actors, and the modeling of each tool-activity in the form of instrument, verb, target> triplet.
arXiv Detail & Related papers (2023-02-13T11:53:14Z) - Quantification of Robotic Surgeries with Vision-Based Deep Learning [45.165919577877695]
We propose a unified deep learning framework, entitled Roboformer, which operates exclusively on videos recorded during surgery.
We validated our framework on four video-based datasets of two commonly-encountered types of steps within minimally-invasive robotic surgeries.
arXiv Detail & Related papers (2022-05-06T06:08:35Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.