Enhanced Automotive Object Detection via RGB-D Fusion in a DiffusionDet Framework
- URL: http://arxiv.org/abs/2406.03129v1
- Date: Wed, 5 Jun 2024 10:24:00 GMT
- Title: Enhanced Automotive Object Detection via RGB-D Fusion in a DiffusionDet Framework
- Authors: Eliraz Orfaig, Inna Stainvas, Igal Bilik,
- Abstract summary: Vision-based autonomous driving requires reliable and efficient object detection.
This work proposes a DiffusionDet-based framework that exploits data fusion from the monocular camera and depth sensor to provide the RGB and depth (RGB-D) data.
By integrating the textural and color features from RGB images with the spatial depth information from the LiDAR sensors, the proposed framework employs a feature fusion that substantially enhances object detection of automotive targets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision-based autonomous driving requires reliable and efficient object detection. This work proposes a DiffusionDet-based framework that exploits data fusion from the monocular camera and depth sensor to provide the RGB and depth (RGB-D) data. Within this framework, ground truth bounding boxes are randomly reshaped as part of the training phase, allowing the model to learn the reverse diffusion process of noise addition. The system methodically enhances a randomly generated set of boxes at the inference stage, guiding them toward accurate final detections. By integrating the textural and color features from RGB images with the spatial depth information from the LiDAR sensors, the proposed framework employs a feature fusion that substantially enhances object detection of automotive targets. The $2.3$ AP gain in detecting automotive targets is achieved through comprehensive experiments using the KITTI dataset. Specifically, the improved performance of the proposed approach in detecting small objects is demonstrated.
Related papers
- FusionVision: A comprehensive approach of 3D object reconstruction and segmentation from RGB-D cameras using YOLO and fast segment anything [1.5728609542259502]
This paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery.
The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain.
The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation.
arXiv Detail & Related papers (2024-02-29T22:59:27Z) - Removal then Selection: A Coarse-to-Fine Fusion Perspective for RGB-Infrared Object Detection [20.12812979315803]
Object detection utilizing both visible (RGB) and thermal infrared (IR) imagery has garnered extensive attention.
Most existing multi-modal object detection methods directly input the RGB and IR images into deep neural networks.
We propose a novel coarse-to-fine perspective to purify and fuse features from both modalities.
arXiv Detail & Related papers (2024-01-19T14:49:42Z) - RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
We propose a real-time and two stream RGBD object detection model.
The proposed model consists of two new components: a depth guided hyper-involution that adapts dynamically based on the spatial interaction pattern in the raw depth map and an up-sampling based trainable fusion layer.
We show that the proposed model outperforms other RGB-D based object detection models on NYU Depth v2 dataset and achieves comparable (second best) results on SUN RGB-D.
arXiv Detail & Related papers (2023-09-30T11:25:34Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-10-06T11:59:19Z) - Radar Guided Dynamic Visual Attention for Resource-Efficient RGB Object
Detection [10.983063391496543]
We propose a novel radar-guided spatial attention for RGB images to improve the perception quality of autonomous vehicles.
Our method improves the perception of small and long range objects, which are often not detected by the object detectors in RGB mode.
arXiv Detail & Related papers (2022-06-03T18:29:55Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - RGB-D Salient Object Detection with Ubiquitous Target Awareness [37.6726410843724]
We make the first attempt to solve the RGB-D salient object detection problem with a novel depth-awareness framework.
We propose a Ubiquitous Target Awareness (UTA) network to solve three important challenges in RGB-D SOD task.
Our proposed UTA network is depth-free for inference and runs in real-time with 43 FPS.
arXiv Detail & Related papers (2021-09-08T04:27:29Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.