Sample-specific Masks for Visual Reprogramming-based Prompting
- URL: http://arxiv.org/abs/2406.03150v1
- Date: Wed, 5 Jun 2024 11:15:43 GMT
- Title: Sample-specific Masks for Visual Reprogramming-based Prompting
- Authors: Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu,
- Abstract summary: Visual reprogramming (VR) is a prompting technique that aims to re-purpose a pre-trained model to target tasks.
In this paper, we show that the shared mask potentially limits VR's generalization and increases its approximation error.
Motivated by this finding, we design a new framework for VR called sample-specific multi-channel masks (SMM)
- Score: 20.27639343292564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual reprogramming (VR) is a prompting technique that aims to re-purpose a pre-trained model (e.g., a classifier on ImageNet) to target tasks (e.g., medical data prediction) by learning a small-scale pattern added into input images instead of tuning considerable parameters within the model. The location of the pattern within input samples is usually determined by a pre-defined mask shared across all samples. In this paper, we show that the shared mask potentially limits VR's generalization and increases its approximation error due to the lack of sample-level adaptation. Motivated by this finding, we design a new framework for VR called sample-specific multi-channel masks (SMM). Specifically, SMM employs a lightweight ConvNet and patch-wise interpolation to generate sample-specific three-channel masks instead of a shared and pre-defined mask. Since we generate different masks for individual samples, SMM is theoretically shown to reduce approximation error for the target tasks compared with existing state-of-the-art VR methods. We also empirically demonstrate its performance gain on both ResNet and ViT. The success of SMM further highlights the broader applicability of VR in leveraging the latent knowledge of pre-trained models for various target tasks. Our code is available at https://github.com/tmlr-group/SMM.
Related papers
- Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Pluralistic Salient Object Detection [108.74650817891984]
We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image.
We present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics.
arXiv Detail & Related papers (2024-09-04T01:38:37Z) - Synthetic dual image generation for reduction of labeling efforts in semantic segmentation of micrographs with a customized metric function [0.0]
Training semantic segmentation models for material analysis requires micrographs and their corresponding masks.
We demonstrate a workflow for the improvement of semantic segmentation models through the generation of synthetic microstructural images in conjunction with masks.
The approach could be generalized to various types of image data such as it serves as a user-friendly solution for training models with a small number of real images.
arXiv Detail & Related papers (2024-08-01T16:54:11Z) - MaskUno: Switch-Split Block For Enhancing Instance Segmentation [0.0]
We propose replacing mask prediction with a Switch-Split block that processes refined ROIs, classifies them, and assigns them to specialized mask predictors.
An increase in the mean Average Precision (mAP) of 2.03% was observed for the high-performing DetectoRS when trained on 80 classes.
arXiv Detail & Related papers (2024-07-31T10:12:14Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDP is a simple and scalable self-supervised pretraining method for reinforcement learning and behavioral cloning.
We find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching.
arXiv Detail & Related papers (2022-11-23T07:04:41Z) - MaskViT: Masked Visual Pre-Training for Video Prediction [29.25521342538311]
We create good video prediction models by pre-training transformers via masked visual modeling.
MaskViT outperforms prior works in video prediction, is parameter efficient and can generate high-resolution videos.
Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling.
arXiv Detail & Related papers (2022-06-23T17:59:33Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
Mask representation in instance segmentation with Point-of-Interest (PoI) features is challenging because learning a high-dimensional mask feature for each instance requires a heavy computing burden.
We propose an instance-aware convolution, which decomposes this mask representation learning task into two tractable modules.
Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach.
arXiv Detail & Related papers (2020-03-13T08:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.