Pluralistic Salient Object Detection
- URL: http://arxiv.org/abs/2409.02368v1
- Date: Wed, 4 Sep 2024 01:38:37 GMT
- Title: Pluralistic Salient Object Detection
- Authors: Xuelu Feng, Yunsheng Li, Dongdong Chen, Chunming Qiao, Junsong Yuan, Lu Yuan, Gang Hua,
- Abstract summary: We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image.
We present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics.
- Score: 108.74650817891984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image. Unlike conventional SOD methods that produce a single segmentation mask for salient objects, this new setting recognizes the inherent complexity of real-world images, comprising multiple objects, and the ambiguity in defining salient objects due to different user intentions. To study this task, we present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics. DUTS-MM builds upon the DUTS dataset but enriches the ground-truth mask annotations from three aspects which 1) improves the mask quality especially for boundary and fine-grained structures; 2) alleviates the annotation inconsistency issue; and 3) provides multiple ground-truth masks for images with saliency ambiguity. DUTS-MQ consists of approximately 100K image-mask pairs with human-annotated preference scores, enabling the learning of real human preferences in measuring mask quality. Building upon these two datasets, we propose a simple yet effective pluralistic SOD baseline based on a Mixture-of-Experts (MOE) design. Equipped with two prediction heads, it simultaneously predicts multiple masks using different query prompts and predicts human preference scores for each mask candidate. Extensive experiments and analyses underscore the significance of our proposed datasets and affirm the effectiveness of our PSOD framework.
Related papers
- Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - MonoMAE: Enhancing Monocular 3D Detection through Depth-Aware Masked Autoencoders [93.87585467898252]
We design MonoMAE, a monocular 3D detector inspired by Masked Autoencoders.
MonoMAE consists of two novel designs. The first is depth-aware masking that selectively masks certain parts of non-occluded object queries.
The second is lightweight query completion that works with the depth-aware masking to learn to reconstruct and complete the masked object queries.
arXiv Detail & Related papers (2024-05-13T12:32:45Z) - Self-Supervised Learning for Visual Relationship Detection through
Masked Bounding Box Reconstruction [6.798515070856465]
We present a novel self-supervised approach for representation learning, particularly for the task of Visual Relationship Detection (VRD)
Motivated by the effectiveness of Masked Image Modeling (MIM), we propose Masked Bounding Box Reconstruction (MBBR)
arXiv Detail & Related papers (2023-11-08T16:59:26Z) - Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation [29.43462426812185]
We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
Our mask-based method, Mask2Anomaly, demonstrates the feasibility of integrating a mask-classification architecture.
By comprehensive qualitative and qualitative evaluation, we show Mask2Anomaly achieves new state-of-the-art results.
arXiv Detail & Related papers (2023-09-08T20:07:18Z) - MMRDN: Consistent Representation for Multi-View Manipulation
Relationship Detection in Object-Stacked Scenes [62.20046129613934]
We propose a novel multi-view fusion framework, namely multi-view MRD network (MMRDN)
We project the 2D data from different views into a common hidden space and fit the embeddings with a set of Von-Mises-Fisher distributions.
We select a set of $K$ Maximum Vertical Neighbors (KMVN) points from the point cloud of each object pair, which encodes the relative position of these two objects.
arXiv Detail & Related papers (2023-04-25T05:55:29Z) - Efficient Masked Autoencoders with Self-Consistency [34.7076436760695]
Masked image modeling (MIM) has been recognized as a strong self-supervised pre-training method in computer vision.
We propose efficient masked autoencoders with self-consistency (EMAE) to improve the pre-training efficiency.
EMAE consistently obtains state-of-the-art transfer ability on a variety of downstream tasks, such as image classification, object detection, and semantic segmentation.
arXiv Detail & Related papers (2023-02-28T09:21:12Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
Mask representation in instance segmentation with Point-of-Interest (PoI) features is challenging because learning a high-dimensional mask feature for each instance requires a heavy computing burden.
We propose an instance-aware convolution, which decomposes this mask representation learning task into two tractable modules.
Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach.
arXiv Detail & Related papers (2020-03-13T08:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.