Dynamic Spectral Clustering with Provable Approximation Guarantee
- URL: http://arxiv.org/abs/2406.03152v1
- Date: Wed, 5 Jun 2024 11:16:55 GMT
- Title: Dynamic Spectral Clustering with Provable Approximation Guarantee
- Authors: Steinar Laenen, He Sun,
- Abstract summary: The paper proves that, under some mild condition on the cluster-structure, the clusters of the final graph $G_T$ can be well approximated by a dynamic variant of the spectral clustering algorithm.
Experimental studies on both synthetic and real-world datasets further confirm the practicality of our designed algorithm.
- Score: 7.6676757797831225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies clustering algorithms for dynamically evolving graphs $\{G_t\}$, in which new edges (and potential new vertices) are added into a graph, and the underlying cluster structure of the graph can gradually change. The paper proves that, under some mild condition on the cluster-structure, the clusters of the final graph $G_T$ of $n_T$ vertices at time $T$ can be well approximated by a dynamic variant of the spectral clustering algorithm. The algorithm runs in amortised update time $O(1)$ and query time $o(n_T)$. Experimental studies on both synthetic and real-world datasets further confirm the practicality of our designed algorithm.
Related papers
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Fast and Simple Spectral Clustering in Theory and Practice [7.070726553564701]
Spectral clustering is a popular and effective algorithm designed to find $k$ clusters in a graph $G$.
We present a simple spectral clustering algorithm based on a vertices embedding with $O(log(k))$ computed by the power method.
We evaluate the new algorithm on several synthetic and real-world datasets, finding that it is significantly faster than alternative clustering algorithms, while producing results with approximately the same clustering accuracy.
arXiv Detail & Related papers (2023-10-17T02:31:57Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An
Index-based Approach [9.13755431537592]
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(mtimesleft( 2+ alpha (G) right)+n)$ to $O(m+n)$ for any given value of $varepsilon$ for a complete signed graph.
Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting.
arXiv Detail & Related papers (2023-01-01T10:57:36Z) - Hierarchical Clustering: $O(1)$-Approximation for Well-Clustered Graphs [3.2901541059183432]
We present two-time approximation algorithms for hierarchical clustering.
The significance of our work is demonstrated by the empirical analysis on both synthetic and real-world data sets.
arXiv Detail & Related papers (2021-12-16T17:52:04Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.