Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation
- URL: http://arxiv.org/abs/2406.03173v1
- Date: Wed, 5 Jun 2024 12:06:04 GMT
- Title: Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation
- Authors: Risab Biswas,
- Abstract summary: This thesis aims to investigate the feasibility of knowledge transfer between neural networks for medical image segmentation tasks.
In the context of medical imaging, where the data volumes are often limited, leveraging knowledge from a larger pre-trained network could be useful.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis aims to investigate the feasibility of knowledge transfer between neural networks for medical image segmentation tasks, specifically focusing on the transfer from a larger multi-task "Teacher" network to a smaller "Student" network. In the context of medical imaging, where the data volumes are often limited, leveraging knowledge from a larger pre-trained network could be useful. The primary objective is to enhance the performance of a smaller student model by incorporating knowledge representations acquired by a teacher model that adopts a multi-task pre-trained architecture trained on CT images, to a more resource-efficient student network, which can essentially be a smaller version of the same, trained on a mere 50% of the data than that of the teacher model. To facilitate knowledge transfer between the two models, we devised an architecture incorporating multi-scale feature distillation and supervised contrastive learning. Our study aims to improve the student model's performance by integrating knowledge representations from the teacher model. We investigate whether this approach is particularly effective in scenarios with limited computational resources and limited training data availability. To assess the impact of multi-scale feature distillation, we conducted extensive experiments. We also conducted a detailed ablation study to determine whether it is essential to distil knowledge at various scales, including low-level features from encoder layers, for effective knowledge transfer. In addition, we examine different losses in the knowledge distillation process to gain insights into their effects on overall performance.
Related papers
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
Reinforcement learning has achieved promising results on robotic control tasks but struggles to leverage information effectively.
Recent works construct auxiliary losses based on reconstruction or mutual information to extract joint representations from multiple sensory inputs.
We argue that compressing information in the learned joint representations about raw multimodal observations is helpful.
arXiv Detail & Related papers (2024-10-23T04:32:37Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
Cross-task knowledge distillation helps to train a small student model to obtain a competitive performance.
We propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios.
arXiv Detail & Related papers (2022-12-26T15:00:42Z) - On effects of Knowledge Distillation on Transfer Learning [0.0]
We propose a machine learning architecture we call TL+KD that combines knowledge distillation with transfer learning.
We show that using guidance and knowledge from a larger teacher network during fine-tuning, we can improve the student network to achieve better validation performances like accuracy.
arXiv Detail & Related papers (2022-10-18T08:11:52Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMix is a new multi-task learning model that jointly learns disease classification and anatomical segmentation in a semi-supervised manner.
Our experiments with varying quantities of multi-source labeled data in the training sets confirm the effectiveness of MultiMix.
arXiv Detail & Related papers (2021-10-25T18:09:19Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
A simple form of transfer learning is common in current state-of-the-art computer vision models.
Previous systematic studies of transfer learning have been limited and the circumstances in which it is expected to work are not fully understood.
In this paper we carry out an extensive experimental exploration of transfer learning across vastly different image domains.
arXiv Detail & Related papers (2021-03-24T16:24:20Z) - MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical
Images [13.690075845927606]
We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner.
Our experiments justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images.
arXiv Detail & Related papers (2020-10-28T03:47:29Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z) - Neural Networks Are More Productive Teachers Than Human Raters: Active
Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model [57.41841346459995]
We study how to train a student deep neural network for visual recognition by distilling knowledge from a blackbox teacher model in a data-efficient manner.
We propose an approach that blends mixup and active learning.
arXiv Detail & Related papers (2020-03-31T05:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.