Feature learning in finite-width Bayesian deep linear networks with multiple outputs and convolutional layers
- URL: http://arxiv.org/abs/2406.03260v2
- Date: Thu, 17 Oct 2024 08:15:09 GMT
- Title: Feature learning in finite-width Bayesian deep linear networks with multiple outputs and convolutional layers
- Authors: Federico Bassetti, Marco Gherardi, Alessandro Ingrosso, Mauro Pastore, Pietro Rotondo,
- Abstract summary: Deep linear networks have been extensively studied, but little is known in the case of finite-width architectures with multiple outputs and convolutional layers.
Our work provides a dictionary that translates this physics intuition and terminology into rigorous Bayesian statistics.
- Score: 39.71511919246829
- License:
- Abstract: Deep linear networks have been extensively studied, as they provide simplified models of deep learning. However, little is known in the case of finite-width architectures with multiple outputs and convolutional layers. In this manuscript, we provide rigorous results for the statistics of functions implemented by the aforementioned class of networks, thus moving closer to a complete characterization of feature learning in the Bayesian setting. Our results include: (i) an exact and elementary non-asymptotic integral representation for the joint prior distribution over the outputs, given in terms of a mixture of Gaussians; (ii) an analytical formula for the posterior distribution in the case of squared error loss function (Gaussian likelihood); (iii) a quantitative description of the feature learning infinite-width regime, using large deviation theory. From a physical perspective, deep architectures with multiple outputs or convolutional layers represent different manifestations of kernel shape renormalization, and our work provides a dictionary that translates this physics intuition and terminology into rigorous Bayesian statistics.
Related papers
- Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
For a large class of feature maps we provide a tight characterisation of the test error associated with learning the readout layer.
In some cases our results can capture feature maps learned by deep, finite-width neural networks trained under gradient descent.
arXiv Detail & Related papers (2024-02-21T18:35:27Z) - A theory of data variability in Neural Network Bayesian inference [0.70224924046445]
We provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks.
We derive the generalization properties from the statistical properties of the input.
We show that data variability leads to a non-Gaussian action reminiscent of a ($varphi3+varphi4$)-theory.
arXiv Detail & Related papers (2023-07-31T14:11:32Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory.
We show that linear networks make provably optimal predictions at infinite depth.
We also show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth.
arXiv Detail & Related papers (2022-12-29T20:57:46Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
Covariance, Expressivity, and Neural Tangent Kernel [6.599344783327053]
We show that the weight space view yields the same effective covariance functions which were obtained previously in function space.
The trig networks are flexible and expressive as one can freely adopt different prior distributions over the parameters in weight and feature layers.
arXiv Detail & Related papers (2022-03-14T18:14:59Z) - Universal scaling laws in the gradient descent training of neural
networks [10.508187462682308]
We show that the learning trajectory can be characterized by an explicit bounds at large training times.
Our results are based on spectral analysis of the evolution of a large network trained on the expected loss.
arXiv Detail & Related papers (2021-05-02T16:46:38Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.