Using GNN property predictors as molecule generators
- URL: http://arxiv.org/abs/2406.03278v1
- Date: Wed, 5 Jun 2024 13:53:47 GMT
- Title: Using GNN property predictors as molecule generators
- Authors: FĂ©lix Therrien, Edward H. Sargent, Oleksandr Voznyy,
- Abstract summary: Graph neural networks (GNNs) have emerged as powerful tools to accurately predict materials and molecular properties.
In this article, we exploit the invertible nature of these neural networks to directly generate molecular structures with desired electronic properties.
- Score: 16.34646723046073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as powerful tools to accurately predict materials and molecular properties in computational discovery pipelines. In this article, we exploit the invertible nature of these neural networks to directly generate molecular structures with desired electronic properties. Starting from a random graph or an existing molecule, we perform a gradient ascent while holding the GNN weights fixed in order to optimize its input, the molecular graph, towards the target property. Valence rules are enforced strictly through a judicious graph construction. The method relies entirely on the property predictor; no additional training is required on molecular structures. We demonstrate the application of this method by generating molecules with specific DFT-verified energy gaps and octanol-water partition coefficients (logP). Our approach hits target properties with rates comparable to or better than state-of-the-art generative models while consistently generating more diverse molecules.
Related papers
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Pre-training of Molecular GNNs via Conditional Boltzmann Generator [0.0]
We propose a pre-training method for molecular GNNs using an existing dataset of molecular conformations.
We show that our model has a better prediction performance for molecular properties than existing pre-training methods.
arXiv Detail & Related papers (2023-12-20T15:30:15Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
We propose a property-aware adaptive relation networks (PAR) for the few-shot molecular property prediction problem.
Our PAR is compatible with existing graph-based molecular encoders, and are further equipped with the ability to obtain property-aware molecular embedding and model molecular relation graph.
arXiv Detail & Related papers (2021-07-16T16:22:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.