A Flexible Recursive Network for Video Stereo Matching Based on Residual Estimation
- URL: http://arxiv.org/abs/2406.03333v1
- Date: Wed, 5 Jun 2024 14:49:14 GMT
- Title: A Flexible Recursive Network for Video Stereo Matching Based on Residual Estimation
- Authors: Youchen Zhao, Guorong Luo, Hua Zhong, Haixiong Li,
- Abstract summary: RecSM is a network based on residual estimation for video stereo matching.
With a stack count of 3, RecSM achieves a 4x speed improvement compared to ACVNet, running at 0.054 seconds based on one NVIDIA 2080TI GPU.
- Score: 0.9362376508480733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the high similarity of disparity between consecutive frames in video sequences, the area where disparity changes is defined as the residual map, which can be calculated. Based on this, we propose RecSM, a network based on residual estimation with a flexible recursive structure for video stereo matching. The RecSM network accelerates stereo matching using a Multi-scale Residual Estimation Module (MREM), which employs the temporal context as a reference and rapidly calculates the disparity for the current frame by computing only the residual values between the current and previous frames. To further reduce the error of estimated disparities, we use the Disparity Optimization Module (DOM) and Temporal Attention Module (TAM) to enforce constraints between each module, and together with MREM, form a flexible Stackable Computation Structure (SCS), which allows for the design of different numbers of SCS based on practical scenarios. Experimental results demonstrate that with a stack count of 3, RecSM achieves a 4x speed improvement compared to ACVNet, running at 0.054 seconds based on one NVIDIA RTX 2080TI GPU, with an accuracy decrease of only 0.7%. Code is available at https://github.com/Y0uchenZ/RecSM.
Related papers
- Spatial-Temporal Transformer based Video Compression Framework [44.723459144708286]
We propose a novel Spatial-Temporal Transformer based Video Compression (STT-VC) framework.
It contains a Relaxed Deformable Transformer (RDT) with Uformer based offsets estimation for motion estimation and compensation, a Multi-Granularity Prediction (MGP) module based on multi-reference frames for prediction refinement, and a Spatial Feature Distribution prior based Transformer (SFD-T) for efficient temporal-spatial joint residual compression.
Experimental results demonstrate that our method achieves the best result with 13.5% BD-Rate saving over VTM.
arXiv Detail & Related papers (2023-09-21T09:23:13Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
Video frame is an important low-level computation vision task, which can increase frame rate for more fluent visual experience.
Existing methods have achieved great success by employing advanced motion models and synthesis networks.
WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts.
arXiv Detail & Related papers (2023-09-07T06:41:15Z) - ResQ: Residual Quantization for Video Perception [18.491197847596283]
We propose a novel quantization scheme for video networks coined as Residual Quantization.
We extend our model to dynamically adjust the bit-width proportional to the amount of changes in the video.
arXiv Detail & Related papers (2023-08-18T12:41:10Z) - Distortion-Aware Network Pruning and Feature Reuse for Real-time Video
Segmentation [49.17930380106643]
We propose a novel framework to speed up any architecture with skip-connections for real-time vision tasks.
Specifically, at the arrival of each frame, we transform the features from the previous frame to reuse them at specific spatial bins.
We then perform partial computation of the backbone network on the regions of the current frame that captures temporal differences between the current and previous frame.
arXiv Detail & Related papers (2022-06-20T07:20:02Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z) - Temporal Modulation Network for Controllable Space-Time Video
Super-Resolution [66.06549492893947]
Space-time video super-resolution aims to increase the spatial and temporal resolutions of low-resolution and low-frame-rate videos.
Deformable convolution based methods have achieved promising STVSR performance, but they could only infer the intermediate frame pre-defined in the training stage.
We propose a Temporal Modulation Network (TMNet) to interpolate arbitrary intermediate frame(s) with accurate high-resolution reconstruction.
arXiv Detail & Related papers (2021-04-21T17:10:53Z) - Boosting Continuous Sign Language Recognition via Cross Modality
Augmentation [135.30357113518127]
Continuous sign language recognition deals with unaligned video-text pair.
We propose a novel architecture with cross modality augmentation.
The proposed framework can be easily extended to other existing CTC based continuous SLR architectures.
arXiv Detail & Related papers (2020-10-11T15:07:50Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
This paper proposes a Recurrent Learned Video Compression (RLVC) approach with the Recurrent Auto-Encoder (RAE) and Recurrent Probability Model ( RPM)
The RAE employs recurrent cells in both the encoder and decoder to exploit the temporal correlation among video frames.
Our approach achieves the state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM.
arXiv Detail & Related papers (2020-06-24T08:46:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.